دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Russell G. Almond, Robert J. Mislevy, Linda S. Steinberg, Duanli Yan, David M. Williamson (auth.) سری: Statistics for Social and Behavioral Sciences ISBN (شابک) : 9781493921249, 9781493921256 ناشر: Springer-Verlag New York سال نشر: 2015 تعداد صفحات: 682 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
کلمات کلیدی مربوط به کتاب شبکه های بیزی در ارزیابی آموزشی: آمار برای علوم اجتماعی، علوم رفتاری، آموزش، سیاست عمومی، و قانون، آمار برای مهندسی، فیزیک، علوم کامپیوتر، شیمی و علوم زمین، هوش مصنوعی (شامل رباتیک)
در صورت تبدیل فایل کتاب Bayesian Networks in Educational Assessment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبکه های بیزی در ارزیابی آموزشی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شبکههای استنتاج بیزی، ترکیبی از آمار و سیستمهای خبره، در شرایط عدم قطعیت در پزشکی، تجارت و علوم اجتماعی استدلال پیشرفتهای دارند. این جلد ابتکاری اولین درمان جامعی است که به بررسی این موضوع میپردازد که چگونه میتوان آنها را برای طراحی و تجزیه و تحلیل ارزیابیهای آموزشی نوآورانه به کار برد.
بخش اول پایههای شبکههای بیز را در ارزیابی، آمار و نظریه گراف توسعه میدهد و از طریق واقعی کار میکند. الگوریتم به روز رسانی زمان بخش دوم به فرمهای پارامتریک برای استفاده با ارزیابی، تکنیکهای بررسی مدل، و تخمین با الگوریتم EM و زنجیره مارکوف مونت کارلو (MCMC) میپردازد. یکی از ویژگی های منحصر به فرد، زمینه سازی حجم در چارچوب طراحی مبتنی بر شواهد (ECD) برای طراحی ارزیابی است. این رویکرد «طراحی رو به جلو» طراحان را قادر میسازد تا از ماژولار بودن شبکههای بیز و توانایی مدلسازی روابط شواهد پیچیده که از عملکرد در ارزیابیهای تعاملی و غنی از فناوری مانند شبیهسازیها ناشی میشود، استفاده کنند. بخش سوم ECD را تشریح می کند، شبکه های بیز را به عنوان یک جزء جدایی ناپذیر از یک فرآیند طراحی اصولی قرار می دهد، و ایده ها را با نگاهی عمیق به پروژه BioMass نشان می دهد: ارزیابی نمایشی تعاملی، مبتنی بر استانداردها و ارائه شده تحت وب از تحقیقات علمی در ژنتیک. .
این کتاب هم منبعی برای متخصصان علاقه مند به ارزیابی و هم برای دانش آموزان پیشرفته است. شرح واضح آن، مثالهای عددی کار شده، و نمایشهایی از کاربردهای واقعی و آموزشی، تصاویر ارزشمندی از نحوه استفاده از شبکههای بیز در ارزیابی آموزشی ارائه میدهد. تمرینها هر فصل را دنبال میکنند، و سایت همراه آنلاین یک واژهنامه، مجموعه دادهها و تنظیمات مشکل، و پیوندهایی به منابع محاسباتی ارائه میدهد.
Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments.
Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as an integral component of a principled design process, and illustrates the ideas with an in-depth look at the BioMass project: An interactive, standards-based, web-delivered demonstration assessment of science inquiry in genetics.
This book is both a resource for professionals interested in assessment and advanced students. Its clear exposition, worked-through numerical examples, and demonstrations from real and didactic applications provide invaluable illustrations of how to use Bayes nets in educational assessment. Exercises follow each chapter, and the online companion site provides a glossary, data sets and problem setups, and links to computational resources.
Cover Statistics for Social and Behavioral Sciences Bayesian Networks in Educational Assessment Copyright Springer Science+Business Media New York 2015 ISBN 978-1-4939-2124-9 ISBN 978-1-4939-2125-6 (eBook) DOI 10.1007/978-1-4939-2125-6 Library of Congress Control Number: 2014958291 Dedication Acknowledgements Using This Book Notation Random Variables Sets Probability Distributions and Related Functions Transcendental Functions Usual Use of Letters for Indices Contents List of Figures List of Tables Part I Building Blocks for Bayesian Networks 1 Introduction 1.1 An Example Bayes Network 1.2 Cognitively Diagnostic Assessment 1.3 Cognitive and Psychometric Science 1.4 Ten Reasons for Considering Bayesian Networks 1.5 What Is in This Book 2 An Introduction to Evidence-Centered Design 2.1 Overview 2.2 Assessment as Evidentiary Argument 2.3 The Process of Design 2.4 Basic ECD Structures 2.4.1 The Conceptual Assessment Framework 2.4.2 Four-Process Architecture for Assessment Delivery 2.4.3 Pretesting and Calibration 2.5 Conclusion 3 Bayesian Probability and Statistics: a Review 3.1 Probability: Objective and Subjective 3.1.1 Objective Notions of Probability 3.1.2 Subjective Notions of Probability 3.1.3 Subjective–Objective Probability 3.2 Conditional Probability 3.3 Independence and Conditional Independence 3.3.1 Conditional Independence 3.3.2 Common Variable Dependence 3.3.3 Competing Explanations 3.4 Random Variables 3.4.1 The Probability Mass and Density Functions 3.4.2 Expectation and Variance 3.5 Bayesian Inference 3.5.1 Re-expressing Bayes Theorem 3.5.2 Bayesian Paradigm 3.5.3 Conjugacy 3.5.4 Sources for Priors 3.5.5 Noninformative Priors 3.5.6 Evidence-Centered Design and the Bayesian Paradigm 4 Basic Graph Theory and Graphical Models 4.1 Basic Graph Theory 4.1.1 Simple Undirected Graphs 4.1.2 Directed Graphs 4.1.3 Paths and Cycles 4.2 Factorization of the Joint Distribution 4.2.1 Directed Graph Representation 4.2.2 Factorization Hypergraphs 4.2.3 Undirected Graphical Representation 4.3 Separation and Conditional Independence 4.3.1 Separation and D-Separation 4.3.2 Reading Dependence and Independence from Graphs 4.3.3 Gibbs–Markov Equivalence Theorem 4.4 Edge Directions and Causality 4.5 Other Representations 4.5.1 Influence Diagrams 4.5.2 Structural Equation Models 4.5.3 Other Graphical Models 5 Efficient Calculations 5.1 Belief Updating with Two Variables 5.2 More Efficient Procedures for Chains and Trees 5.2.1 Propagation in Chains 5.2.2 Propagation in Trees 5.2.3 Virtual Evidence 5.3 Belief Updating in Multiply Connected Graphs 5.3.1 Updating in the Presence of Loops 5.3.2 Constructing a Junction Tree 5.3.3 Propagating Evidence Through a Junction Tree 5.4 Application to Assessment 5.4.1 Proficiency and Evidence Model Bayes Net Fragments 5.4.2 Junction Trees for Fragments 5.4.3 Calculation with Fragments 5.5 The Structure of a Test 5.5.1 The Q-Matrix for Assessments Using Only Discrete Items 5.5.2 The Q-Matrix for a Test Using Multi-observable Tasks 5.6 Alternative Computing Algorithms 5.6.1 Variants of the Propagation Algorithm 5.6.2 Dealing with Unfavorable Topologies 6 Some Example Networks 6.1 A Discrete IRT Model 6.1.1 General Features of the IRT Bayes Net 6.1.2 Inferences in the IRT Bayes Net 6.2 The ``Context\'\' Effect 6.3 Compensatory, Conjunctive, and Disjunctive Models 6.4 A Binary-Skills Measurement Model 6.4.1 The Domain of Mixed Number Subtraction 6.4.2 A Bayes Net Model for Mixed-Number Subtraction 6.4.3 Inferences from the Mixed-Number Subtraction Bayes Net 6.5 Discussion 7 Explanation and Test Construction 7.1 Simple Explanation Techniques 7.1.1 Node Coloring 7.1.2 Most Likely Scenario 7.2 Weight of Evidence 7.2.1 Evidence Balance Sheet 7.2.2 Evidence Flow Through the Graph 7.3 Activity Selection 7.3.1 Value of Information 7.3.2 Expected Weight of Evidence 7.3.3 Mutual Information 7.4 Test Construction 7.4.1 Computer Adaptive Testing 7.4.2 Critiquing 7.4.3 Fixed-Form Tests 7.5 Reliability and Assessment Information 7.5.1 Accuracy Matrix 7.5.2 Consistency Matrix 7.5.3 Expected Value Matrix 7.5.4 Weight of Evidence as Information Part II Learning and Revising Models from Data 8 Parameters for Bayesian Network Models 8.1 Parameterizing a Graphical Model 8.2 Hyper-Markov Laws 8.3 The Conditional Multinomial—Hyper-Dirichlet Family 8.3.1 Beta-Binomial Family 8.3.2 Dirichlet-Multinomial Family 8.3.3 The Hyper-Dirichlet Law 8.4 Noisy-OR and Noisy-AND Models 8.4.1 Separable Influence 8.5 DiBello\'s Effective Theta Distributions 8.5.1 Mapping Parent Skills to Space 8.5.2 Combining Input Skills 8.5.3 Samejima\'s Graded Response Model 8.5.4 Normal Link Function 8.6 Eliciting Parameters and Laws 8.6.1 Eliciting Conditional Multinomial and Noisy-AND 8.6.2 Priors for DiBello\'s Effective Theta Distributions 8.6.3 Linguistic Priors 9 Learning in Models with Fixed Structure 9.1 Data, Models, and Plate Notation 9.1.1 Plate Notation 9.1.2 A Bayesian Framework for a Generic Measurement Model 9.1.3 Extension to Covariates 9.2 Techniques for Learning with Fixed Structure 9.2.1 Bayesian Inference for the General Measurement Model 9.2.2 Complete Data Tables 9.3 Latent Variables as Missing Data 9.4 The EM Algorithm 9.5 Markov Chain Monte Carlo Estimation 9.5.1 Gibbs Sampling 9.5.2 Properties of MCMC Estimation 9.5.3 The Metropolis–Hastings Algorithm 9.6 MCMC Estimation in Bayes Nets in Assessment 9.6.1 Initial Calibration 9.6.2 Online Calibration 9.7 Caution: MCMC and EM are Dangerous! 10 Critiquing and Learning Model Structure 10.1 Fit Indices Based on Prediction Accuracy 10.2 Posterior Predictive Checks 10.3 Graphical Methods 10.4 Differential Task Functioning 10.5 Model Comparison 10.5.1 The DIC Criterion 10.5.2 Prediction Criteria 10.6 Model Selection 10.6.1 Simple Search Strategies 10.6.2 Stochastic Search 10.6.3 Multiple Models 10.6.4 Priors Over Models 10.7 Equivalent Models and Causality 10.7.1 Edge Orientation 10.7.2 Unobserved Variables 10.7.3 Why Unsupervised Learning cannot Prove Causality 10.8 The ``True\'\' Model 11 An Illustrative Example 11.1 Representing the Cognitive Model 11.1.1 Representing the Cognitive Model as a Bayesian Network 11.1.2 Representing the Cognitive Model as a Bayesian Network 11.1.3 Higher-Level Structure of the Proficiency Model; i.e., p(bold0mu mumu [|bold0mu mumu [) and p(bold0mu mumu [) 11.1.4 High Level Structure of the Evidence Models; i.e., p() 11.1.5 Putting the Pieces Together 11.2 Calibrating the Model with Field Data 11.2.1 MCMC Estimation 11.2.2 Scoring 11.2.3 Online Calibration 11.3 Model Checking 11.3.1 Observable Characteristic Plots 11.3.2 Posterior Predictive Checks 11.4 Closing Comments Part III Evidence-Centered Assessment Design 12 The Conceptual Assessment Framework 12.1 Phases of the Design Process and Evidentiary Arguments 12.1.1 Domain Analysis and Domain Modeling 12.1.2 Arguments and Claims 12.2 The Student Proficiency Model 12.2.1 Proficiency Variables 12.2.2 Relationships Among Proficiency Variables 12.2.3 Reporting Rules 12.3 Task Models 12.4 Evidence Models 12.4.1 Rules of Evidence (for Evidence Identification) 12.4.2 Statistical Models of Evidence (for Evidence Accumulation) 12.5 The Assembly Model 12.6 The Presentation Model 12.7 The Delivery Model 12.8 Putting It All Together 13 The Evidence Accumulation Process 13.1 The Four-Process Architecture 13.1.1 A Simple Example of the Four-Process Framework 13.2 Producing an Assessment 13.2.1 Tasks and Task Model Variables 13.2.2 Evidence Rules 13.2.3 Evidence Models, Links, and Calibration 13.3 Scoring 13.3.1 Basic Scoring Protocols 13.3.2 Adaptive Testing 13.3.3 Technical Considerations 13.3.4 Score Reports 14 Biomass: An Assessment of Science Standards 14.1 Design Goals 14.2 Designing Biomass 14.2.1 Reconceiving Standards 14.2.2 Defining Claims 14.2.3 Defining Evidence 14.3 The Biomass Conceptual Assessment Framework 14.3.1 The Proficiency Model 14.3.2 The Assembly Model 14.3.3 Task Models 14.3.4 Evidence Models 14.4 The Assessment Delivery Processes 14.4.1 Biomass Architecture 14.4.2 The Presentation Process 14.4.3 Evidence Identification 14.4.4 Evidence Accumulation 14.4.5 Activity Selection 14.4.6 The Task/Evidence Composite Library 14.4.7 Controlling the Flow of Information Among the Processes 14.5 Conclusion 15 The Biomass Measurement Model 15.1 Specifying Prior Distributions 15.1.1 Specification of Proficiency Variable Priors 15.1.2 Specification of Evidence Model Priors 15.1.3 Summary Statistics 15.2 Pilot Testing 15.2.1 A Convenience Sample 15.2.2 Item and other Exploratory Analyses 15.3 Updating Based on Pilot Test Data 15.3.1 Posterior Distributions 15.3.2 Some Observations on Model Fit 15.3.3 A Quick Validity Check 15.4 Conclusion 16 The Future of Bayesian Networks in Educational Assessment 16.1 Applications of Bayesian Networks 16.2 Extensions to the Basic Bayesian Network Model 16.2.1 Object-Oriented Bayes Nets 16.2.2 Dynamic Bayesian Networks 16.2.3 Assessment-Design Support 16.3 Connections with Instruction 16.3.1 Ubiquitous Assessment 16.4 Evidence-Centered Assessment Design and Validity 16.5 What We Still Do Not Know A Bayesian Network Resources A.1 Software A.1.1 Bayesian Network Manipulation A.1.2 Manual Construction of Bayesian Networks A.1.3 Markov Chain Monte Carlo A.2 Sample Bayesian Networks References Author Index Subject Index