ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Bayesian models: a statistical primer for ecologists

دانلود کتاب مدل های بیزی: آغازگر آماری برای بوم شناسان

Bayesian models: a statistical primer for ecologists

مشخصات کتاب

Bayesian models: a statistical primer for ecologists

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9780691159287, 1400866553 
ناشر: Princeton University Press 
سال نشر: 2015;2017 
تعداد صفحات: 315 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 مگابایت 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Bayesian models: a statistical primer for ecologists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مدل های بیزی: آغازگر آماری برای بوم شناسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مدل های بیزی: آغازگر آماری برای بوم شناسان

مدل‌سازی بیزی به ابزاری ضروری برای تحقیقات بوم‌شناختی تبدیل شده است، زیرا به طور منحصربه‌فردی برای مقابله با پیچیدگی به روشی منسجم آماری مناسب است. این کتاب درسی مقدمه ای جامع و قابل دسترس بر آخرین روش های بیزی ارائه می دهد - به زبانی که بوم شناسان می توانند آن را بفهمند. برخلاف سایر کتاب‌های مربوط به این موضوع، این کتاب بر اصول محاسبات تأکید دارد و به بوم‌شناسان درک کاملی از نحوه اجرای این رویکرد آماری قدرتمند می‌دهد.

مدل‌های بیزی یک آغازگر ضروری برای افراد غیر آمار. با تعریف احتمال شروع می شود و دنباله ای گام به گام از ایده های مرتبط، شامل نظریه توزیع پایه، نمودارهای شبکه، مدل های سلسله مراتبی، زنجیره مارکوف مونت کارلو، و استنتاج از مدل های منفرد و چندگانه را توسعه می دهد. این کتاب منحصربه‌فرد تاکید کمتری بر برنامه‌نویسی رایانه‌ای دارد و در عوض ارائه مختصری از آمارهای ریاضی مورد نیاز برای درک چگونگی و چرایی عملکرد تحلیل بیزی را ترجیح می‌دهد. همچنین توضیح می‌دهد که چگونه مدل‌های بیزی سلسله‌مراتبی به‌درستی فرمول‌بندی شده و از آنها در محاسبات، مقالات تحقیقاتی و پیشنهادات استفاده شود.

این آغازگر بوم‌شناسان را قادر می‌سازد تا اصول آماری پشت مدل‌سازی بیزی را درک کنند و آن‌ها را در تحقیقات به کار ببرند. تدریس، سیاست، و مدیریت.



مبانی ریاضی و آماری مدل‌سازی بیزی را به زبانی که برای افراد غیرآمار در دسترس است ارائه می‌کند
تئوری توزیع اولیه، نمودارهای شبکه را پوشش می‌دهد. ، مدل های سلسله مراتبی، زنجیره مارکوف مونت کارلو، و موارد دیگر
بر کدنویسی کامپیوتری به نفع اصول اساسی تاکید می کند
چگونگی نوشتن عبارات آماری فاکتورگیری مناسب را که مدل های بیزی را نشان می دهد، توضیح می دهد.


توضیحاتی درمورد کتاب به خارجی

Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods--in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.

Bayesian Modelsis an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.

This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.



Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticians
Covers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and more
Deemphasizes computer coding in favor of basic principles
Explains how to write out properly factored statistical expressions representing Bayesian models



فهرست مطالب

Cover......Page 1
Title......Page 4
Copyright......Page 5
Contents......Page 6
Preface......Page 10
I Fundamentals......Page 16
1 PREVIEW......Page 18
1.1 A Line of Inference for Ecology......Page 19
1.2 An Example Hierarchical Model......Page 26
1.3 What Lies Ahead?......Page 30
2.1 Modeling Styles in Ecology......Page 32
2.2 A Few Good Functions......Page 36
3.1 Why Bother with First Principles?......Page 44
3.2 Rules of Probability......Page 46
3.3 Factoring Joint Probabilities......Page 51
3.4 Probability Distributions......Page 54
4.1 Likelihood Functions......Page 86
4.2 Likelihood Profiles......Page 89
4.3 Maximum Likelihood......Page 91
4.4 The Use of Prior Information in Maximum Likelihood......Page 92
5 SIMPLE BAYESIAN MODELS......Page 94
5.1 Bayes’ Theorem......Page 96
5.2 The Relationship between Likelihood and Bayes’......Page 100
5.3 Finding the Posterior Distribution in Closed Form......Page 101
5.4 More about Prior Distributions......Page 105
6 HIERARCHICAL BAYESIAN MODELS......Page 122
6.1 What Is a Hierarchical Model?......Page 123
6.2 Example Hierarchical Models......Page 124
6.3 When Are Observation and Process Variance Identifiable?......Page 156
II Implementation......Page 158
7.1 Overview......Page 160
7.2 How Does MCMC Work?......Page 161
7.3 Specifics of the MCMC Algorithm......Page 165
7.4 MCMC in Practice......Page 192
8.1 Model Checking......Page 196
8.2 Marginal Posterior Distributions......Page 205
8.3 Derived Quantities......Page 209
8.4 Predictions of Unobserved Quantities......Page 211
8.5 Return to the Wildebeest......Page 216
9 INFERENCE FROM MULTIPLE MODELS......Page 224
9.1 Model Selection......Page 225
9.2 Model Probabilities and Model Averaging......Page 237
9.3 Which Method to Use?......Page 242
III Practice in Model Building......Page 246
10.1 A General Approach......Page 248
10.2 An Example of Model Building: Aboveground Net Primary Production in Sagebrush Steppe......Page 252
11 PROBLEMS......Page 258
11.1 Fisher’s Ticks......Page 259
11.2 Light Limitation of Trees......Page 260
11.3 Landscape Occupancy of Swiss Breeding Birds......Page 261
11.4 Allometry of Savanna Trees......Page 262
11.5 Movement of Seals in the North Atlantic......Page 263
12.1 Fisher’s Ticks......Page 266
12.2 Light Limitation of Trees......Page 271
12.3 Landscape Occupancy of Swiss Breeding Birds......Page 274
12.4 Allometry of Savanna Trees......Page 279
12.5 Movement of Seals in the North Atlantic......Page 283
Afterword......Page 288
Acknowledgments......Page 292
A Probability Distributions and Conjugate Priors......Page 294
Bibliography......Page 298
Index......Page 308




نظرات کاربران