دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: آمار زیستی ویرایش: نویسندگان: Yuhlong Lio, Ding-Geng Chen, Hon Keung Tony Ng, Tzong-Ru Tsai سری: Emerging Topics in Statistics and Biostatistics ISBN (شابک) : 3030886573, 9783030886578 ناشر: Springer سال نشر: 2022 تعداد صفحات: 367 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Bayesian Inference and Computation in Reliability and Survival Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استنتاج و محاسبات بیزی در تجزیه و تحلیل قابلیت اطمینان و بقا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تحلیل بیزی یکی از ابزارهای مهم برای مدلسازی و استنتاج آماری است. چارچوبها و روشهای بیزی با موفقیت برای حل مشکلات عملی در تجزیه و تحلیل قابلیت اطمینان و بقا به کار گرفته شدهاند که طیف گستردهای از کاربردهای دنیای واقعی در علوم پزشکی و زیستشناسی، علوم اجتماعی و اقتصادی و مهندسی دارند. در چند دهه گذشته، پیشرفتهای قابل توجهی در استنباط بیزی توسط بسیاری از محققین انجام شده است و پیشرفتها در فناوری محاسباتی و عملکرد رایانه، زمینه را برای فرصتهای جدید در محاسبات بیزی برای پزشکان فراهم کرده است.
از آنجایی که این پیشرفتهای نظری و تکنولوژیکی پرسشها و
چالشهای جدیدی را مطرح میکند و پیچیدگی چارچوب بیزی را افزایش
میدهد، این کتاب متخصصانی را گرد هم میآورد که در تحقیقات
پیشگامانه در مورد استنتاج و محاسبات بیزی برای بحث در مورد
موضوعات مهم، با تاکید بر کاربردها در قابلیت اطمینان و تجزیه و
تحلیل بقا موضوعات تحت پوشش به موقع هستند و پتانسیل تأثیرگذاری
بر دنیای متقابل آمار زیستی، مهندسی، علوم پزشکی، آمار، و موارد
دیگر را دارند. برنامه های کاربردی در حوزه های مختلف تجزیه و
تحلیل آماری زیستی. این جلد به طور کلی به عنوان مرجعی در
تحقیقات سلامت جهانی با کیفیت عمل می کند.
Bayesian analysis is one of the important tools for statistical modelling and inference. Bayesian frameworks and methods have been successfully applied to solve practical problems in reliability and survival analysis, which have a wide range of real world applications in medical and biological sciences, social and economic sciences, and engineering. In the past few decades, significant developments of Bayesian inference have been made by many researchers, and advancements in computational technology and computer performance has laid the groundwork for new opportunities in Bayesian computation for practitioners.
Because these theoretical and technological developments introduce new questions and challenges, and increase the complexity of the Bayesian framework, this book brings together experts engaged in groundbreaking research on Bayesian inference and computation to discuss important issues, with emphasis on applications to reliability and survival analysis. Topics covered are timely and have the potential to influence the interacting worlds of biostatistics, engineering, medical sciences, statistics, and more.
The included chapters present current methods,
theories, and applications in the diverse area of
biostatistical analysis. The volume as a whole serves as
reference in driving quality global health
research.
Preface Outline of This Book Volume List of Reviewers Acknowledgments Contents Contributors About the Editors Part I Reliability Data Analysis A Bayesian Approach for Step-Stress-Accelerated Life Tests for One-Shot Devices Under Exponential Distributions 1 Introduction 2 Model Description 3 Maximum Likelihood Estimation 4 Bayesian Approach 4.1 Normal Prior 4.2 Jeffreys Prior 5 Simulation Study 6 Data Analysis 7 Concluding Remarks References Bayesian Estimation of Stress–Strength Parameter for Moran–Downton Bivariate Exponential Distribution Under Progressive Type II Censoring 1 Introduction 2 Model and Notations 3 Bayesian Framework 3.1 A Markov-Chain Monte Carlo (MCMC) Process 3.2 Plug-In Bayesian Estimate of δ 3.3 Mean-Value Monte Carlo Method 3.4 Importance Sampling Estimation 4 Monte Carlo Simulation Study 5 Numerical Example 6 Concluding Remarks References Bayesian Computation in a Birnbaum–Saunders Reliability Model with Applications to Fatigue Data 1 Introduction 2 The Birnbaum–Saunders Distribution 3 Bayesian Computation and Reliability Model 4 Application to Fatigue Data 5 Conclusions, Discussion, and Future Research References A Competing Risk Model Based on a Two-Parameter Exponential Family Distribution Under Progressive Type II Censoring 1 Introduction 2 Competitive Risk Models 3 Maximum Likelihood Estimation 3.1 Special Family 1: Weibull Distribution 3.2 Special Family 2: Burr XII Distribution 4 Bayesian Estimation 4.1 A Markov-Chain Monte Carlo Process 5 Simulation Studies 6 An Illustrative Example 7 Conclusion Appendix Proof of Proposition 1 Proof of Proposition 2 Proof of Proposition 3 Proof of Proposition 4 References Part II Stochastic Processes in Reliability Analysis Bayesian Computations for Reliability Analysis in Dynamic Environments 1 Introduction and Overview 2 Modulated Nonhomogeneous Poisson Processes for Rail Track Failures 2.1 Bayesian Analysis of the Modulated NHPP 2.1.1 Data Augmentation for Sampling from p(Λ0(t)|β,D) 2.1.2 General Data Augmentation Algorithm 3 Markov Modulated Markov Processes 3.1 The Bivariate Markov Model 3.2 Bayesian Analysis of MMMPs 4 Numerical Illustrations 4.1 A Markov Modulated Poisson Process Model for Software Failures 4.2 A Markov Modulated Compound Poisson Process Model for Power Outages 5 Concluding Remarks References Bayesian Analysis of Stochastic Processes in Reliability 1 Introduction 2 Stochastic Processes 2.1 Distributions Associated with Stochastic Processes 3 Intensity Functions 4 Bayesian Inference 5 Homogeneous Poisson Process 6 The Power Law Process 7 Software Reliability Models 7.1 Jelinski–Moranda Model 7.2 Littlewood–Verrall Model 7.3 Goël–Okumoto Model 7.4 Musa-Okumoto Model 8 Self-Exciting Point Processes 9 Conclusion References Bayesian Analysis of a New Bivariate Wiener Degradation Process 1 Introduction 2 Bivariate Degradation Model 2.1 Model 2.2 Reliability Function 3 Statistical Inference 3.1 Prior Specification 3.2 Gibbs Sampling 4 Data Analysis 5 Conclusion Appendix References Bayesian Estimation for Bivariate Gamma Processes with Copula 1 Introduction 2 Gamma Process with Copula 2.1 The Likelihood Function 3 Markov Chain and Monte Carlo Procedure 3.1 Blocking 3.2 Updating Bi|D, Bj, θ (i≠j) 3.3 Updating Copula Parameter 3.4 Model Comparison 4 Numerical Analysis 4.1 Simulation Study 4.2 Numerical Example 5 Concluding Remarks Appendix References Part III Biomedical Data Analysis Review of Statistical Treatment for Oncology Dose-Escalation Trial with Prolonged Evaluation Window or Fast Enrollment 1 Introduction 2 Dose-Escalation Algorithm 2.1 The 3+3 method 2.2 Model-Based Method 2.2.1 Continual Reassessment Method 2.2.2 Bayesian Logistic Regression Model 2.3 Toxicity Interval-Based Method 2.3.1 Modified Toxicity Probability Interval (mTPI) 2.3.2 Bayesian Optimal Interval Design (BOIN) 3 Time-to-Event Consideration 3.1 The 3+3 Method 3.2 CRM/BLRM 3.2.1 Weighted Likelihood Function Method (TITE-CRM) 3.2.2 TITE-CRM with Suspension Rule 3.2.3 TITE-CRM with Predictive Risk 3.2.4 TITE-CRM with Cycle Information 3.2.5 TITE-CRM with Adaptive Time-to-DLT Distribution 3.2.6 BLRM Adaptation 3.3 Model-Assisted Method 3.3.1 R-TPI 3.3.2 TITE-BOIN 3.3.3 BOIN12 3.3.4 Imputation of Unobserved DLT Data 3.4 Use Kaplan-Meier Method to Derive Fractional DLT for Pending Subjects 4 Summary References A Bayesian Approach for the Analysis of Tumorigenicity Data from Sacrificial Experiments Under Weibull Lifetimes 1 Introduction 2 Model Specification 3 Bayesian Approach 3.1 Laplace Prior 3.2 Normal Prior 3.3 Beta Prior 3.4 Prior Belief on pi 4 Simulation Study 5 Sensitivity Analysis on Prior Accuracy 6 Application to Tumorigenicity Data from Sacrificial Experiments 7 Concluding Remarks References Bayesian Sensitivity Analysis in Survival and Longitudinal Trials with Missing Data 1 Introduction 2 Sensitivity Analysis for Censoring in Survival Trials 2.1 Delta-Adjusted Imputation and Jump-to-Reference 2.2 Estimation of Survival Functions 2.3 Inference Using the Bootstrap Method 3 Sensitivity Analysis in Longitudinal Trials 3.1 Models under the MAR 3.2 Control-Based Imputation Methods 3.3 Bayesian Sensitivity Analysis 4 Examples 4.1 A Time-to-Event Trial Example 4.2 A Longitudinal Study Example 5 Summary and Discussions References Bayesian Analysis for Clustered Data under a Semi-Competing Risks Framework 1 Introduction 2 Models and Methodologies 3 Data and Bayesian Analysis 3.1 Breast Cancer Data 3.2 Bayesian Inference 3.3 Results 4 Concluding Remarks Appendix References Survival Analysis for the Inverse Gaussian Distribution: Natural Conjugate and Jeffrey's Priors 1 Introduction 1.1 Parameterizations 1.2 Development of Bayesian Models 1.2.1 Bayesian Survival Analysis 1.2.2 Natural Conjugate Prior 1.2.3 Jeffrey's Prior 2 Gibbs Sampling Algorithm 3 Monte-Carlo Simulation 3.1 Selection of Hyperparameters 3.1.1 Simulation Results 3.2 Comparison at Different Censoring Levels 4 Illustrative Example 5 Concluding Remarks References Bayesian Inferences for Panel Count Data and Interval-Censored Data with Nonparametric Modeling of the Baseline Functions 1 Introduction 2 Models and the Observed Likelihoods 2.1 Gamma Frailty Poisson Process for Panel Count Data 2.2 The PH and PO Models for General Interval-Censored Data 3 Modeling the Baseline Functions Nonparametrically 4 Data Augmentation 4.1 For Panel Count Data 4.2 For Interval-Censored Data 5 Bayesian Computation 5.1 Prior Specification 5.2 Gibbs Sampler for Panel Count Data 5.3 Gibbs Sampler for Interval-Censored Data 6 Simulation Study 6.1 Panel Count Data 6.2 Interval-Censored Data under the PH and PO Models 7 Real-life Data Application 7.1 The Patent Study 7.2 The Bladder Tumor Study 7.3 Breast Cosmesis Data 8 Discussion References Bayesian Approach for Interval-Censored Survival Data with Time-Varying Coefficients 1 Introduction 2 Bayesian Approach for Clustered Interval-Censored Data 2.1 Model and the likelihood 2.2 Prior 2.3 Posterior Computation 2.3.1 Birth Move 2.3.2 Death Move 3 Bayesian Approach for Spatially Correlated Interval-Censored Data 3.1 Model Specification 3.2 Prior Distributions 3.3 Posterior Inference 3.3.1 Sample D 3.3.2 Sample 3.3.3 Sample Ω 4 Illustrative Examples 4.1 Dental Health Data 4.2 Smoking Cessation Data 5 Discussion and Remarks References Bayesian Approach for Joint Modeling Longitudinal Data and Survival Data Simultaneously in Public Health Studies 1 Introduction 2 Data and Preliminary Data Analysis 3 Statistical Models 3.1 Separate Modeling of Longitudinal Continuous Data 3.2 Separate Modeling of Time-to-Event Data 3.3 Joint (Simultaneous) Modeling of Longitudinal Continuous Data and Time-to-Event Data 4 Results 4.1 Results from Separate Linear Mixed-Effects Model on CD4 Longitudinal Data 4.2 Results of Separate Cox Proportional Hazards Regression 4.3 Results of Joint Modeling of Longitudinal CD4 and Time-to-Death 5 Conclusions and Recommendations References Index