دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: انرژی ویرایش: نویسندگان: Jianmin Ma سری: ISBN (شابک) : 9783527348589, 9783527830053 ناشر: Wiley-VCH سال نشر: 2021 تعداد صفحات: 384 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Battery Technologies: Materials and Components به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فن آوری های باتری: مواد و اجزای سازنده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Contents Preface Chapter 1 Li‐Ion Battery 1.1 Introduction 1.1.1 History of the Lithium‐Ion Battery 1.1.2 Basic Structure of Lithium‐Ion Battery 1.1.3 Working Mechanisms of Lithium‐Ion Battery 1.1.4 Characteristics of Lithium‐Ion Batteries 1.2 Cathode Materials for Lithium‐Ion Batteries 1.2.1 Layer‐Structured Cathode Materials 1.2.2 Spinel‐Structured Cathode Materials 1.2.3 Olivine‐Structured Cathode Materials 1.3 Anode Materials for LIBs 1.3.1 Intercalation Anode Materials 1.3.2 Alloy Anode Materials 1.3.3 Conversion Anode Materials 1.3.4 Lithium Metal Anode 1.4 Electrolyte 1.4.1 Liquid Electrolyte 1.4.1.1 Lithium Salts 1.4.1.2 Organic Solvent 1.4.1.3 Functional Additives 1.4.2 Solid Electrolyte 1.4.2.1 Polymer Electrolyte 1.4.2.2 Li3N and its Derivatives 1.4.2.3 Perovskite Solid Electrolyte 1.4.2.4 LISICON 1.4.2.5 NASICON 1.4.2.6 Garnet 1.4.2.7 Glassy Inorganic Solid Electrolyte 1.5 Separators 1.5.1 Polyolefin Separator 1.5.2 Polymers with High Melting Points for Separators 1.5.3 Inorganic Composite Separators 1.6 Conclusions and Perspective Acknowledgments References Chapter 2 Li–O2 Battery 2.1 Li–O2 Battery 2.1.1 Introduction 2.1.2 Cathode Materials 2.1.2.1 Carbon‐Based Materials 2.1.2.2 Noble Metal‐Based Materials 2.1.2.3 Non‐noble Metal‐Based Materials 2.1.3 Anode Materials 2.1.4 Electrolyte 2.1.4.1 Organic Electrolyte 2.1.4.2 Quasi‐Solid‐State Electrolyte 2.1.4.3 Solid‐State Electrolyte 2.1.5 Separator 2.1.6 From Li–O2 Batteries to Li–Air Batteries 2.1.7 Summary and Perspective Acknowledgments References Chapter 3 Li–Sulfur Battery 3.1 Introduction 3.2 Fundamentals 3.3 Cathodes 3.3.1 S Cathodes 3.3.1.1 Physical Confinement 3.3.1.2 Physical Blocking 3.3.1.3 Polymeric Organosulfur 3.3.1.4 Chemical Adsorption and Catalysis 3.3.2 Li2S Cathodes 3.4 Electrolytes 3.4.1 Ether Electrolyte 3.4.2 Carbonate‐Based 3.4.3 Nitrile‐Based 3.4.4 Sulfones/Sulfoxides‐Based 3.4.5 Ionic Liquids 3.4.6 Polymer/Solid‐State Electrolytes 3.4.7 Additives 3.5 Anodes 3.5.1 Li Anodes 3.5.2 Carbon Anodes 3.5.3 Silicon Anodes 3.6 Challenges and Perspectives References Chapter 4 Na‐Ion Battery 4.1 Introduction 4.1.1 History of Sodium‐Ion Batteries 4.1.2 Composition and Working Mechanism of SIBs 4.2 Cathode Materials for SIBs 4.2.1 Layered Transition Metal Oxide 4.2.2 Polyanionic Compounds 4.2.3 Hexacyanoferrates 4.2.4 Organic Compounds 4.3 Anode Materials for SIBs 4.3.1 Insertion Anode Materials 4.3.1.1 Carbon Materials 4.3.1.2 Titanium‐Based Oxide 4.3.2 Alloyed Anode Materials 4.3.3 Conversion‐Type Anode Materials 4.4 Electrolytes for SIBs 4.4.1 Aqueous Electrolytes 4.4.2 Organic Electrolytes 4.4.3 Solid‐State Electrolytes 4.4.3.1 Solid Polymer Electrolytes 4.4.3.2 Inorganic Solid Electrolytes 4.5 Separators for SIBs 4.5.1 Glass Fiber Separator 4.5.2 Modified Polyolefin Separator 4.5.3 Other Separator References Chapter 5 Na–O2 Battery 5.1 Introduction 5.2 Fundamental Principles 5.3 Cathode Materials 5.3.1 Carbon Materials 5.3.2 Metals and Their Oxides 5.3.2.1 Noble Metals and Their Oxides 5.3.2.2 Non‐noble Metals and Their Oxides 5.3.2.3 Dual Functional Composites 5.4 Anode Materials 5.4.1 Modification of Na Metal Anode 5.4.2 Carbon Materials Modified Na Anode 5.4.3 Metal Alloys/Composites/Hybrids 5.5 Electrolytes 5.5.1 Carbonate‐Based Electrolyte 5.5.2 Ether‐Based Electrolyte 5.5.3 DMSO‐ and ACN‐Based Electrolytes 5.5.4 Ionic Liquid‐Based Electrolyte 5.6 Mechanism Studies 5.7 Conclusion and Perspectives Acknowledgments References Chapter 6 Zn‐Ion Battery 6.1 Introduction 6.2 Fundamentals 6.3 Cathode Materials 6.3.1 Manganese‐Based Materials 6.3.2 Vanadium‐Based Materials 6.3.3 Prussian Blue Analogous 6.3.4 Other Types of Cathode Materials 6.4 Zn Anode 6.4.1 Zinc Alloy Anode 6.4.2 Surface Modification of Zn Anode 6.4.3 Structural Optimization of the Zn Anode 6.5 Aqueous Electrolytes 6.5.1 Types of Zinc Salts 6.5.2 Concentration of Zinc Salt 6.5.3 Electrolyte Additives 6.6 Challenges and Perspectives References Chapter 7 Zn–Air Battery 7.1 Introduction 7.1.1 Metal–Air Batteries 7.1.2 History of Zinc‐Based Technologies 7.1.3 Secondary Zinc–Air Batteries 7.1.3.1 Rechargeability 7.1.3.2 Industrial Approximations 7.1.3.3 Limitations 7.2 Electrolyte System 7.2.1 Mechanisms for Zinc Dissolution 7.2.2 Strategies for Developing An Optimal Electrolyte System for Secondary Zinc–Air Batteries 7.2.2.1 Additives 7.2.2.2 Alternatives to Alkaline Aqueous Electrolyte 7.3 Bifunctional Air Electrode 7.3.1 Mechanism for Bifunctional Air Electrode 7.3.2 Materials for Bifunctional Air Electrode 7.3.2.1 Catalysts 7.3.2.2 Binder 7.3.2.3 Conductive Agents 7.3.2.4 Current Collector 7.3.3 Electrode Structure 7.4 Zinc Anode 7.4.1 Zinc Electrode Configuration 7.4.2 Materials for Zinc Anode 7.4.2.1 Active Material 7.4.2.2 Additives 7.4.2.3 Gelling Agents and Binders 7.4.2.4 Current Collector 7.4.3 Zinc Anode Processing 7.5 Membranes 7.6 Summary and Perspectives References Chapter 8 Al‐Ion Battery 8.1 Introduction 8.2 Historical Development of Aluminum Batteries 8.2.1 Primary Aluminum Batteries: Aqueous Systems 8.2.2 Rechargeable Aluminum Batteries: Non‐aqueous Systems 8.3 Electrolytes for Al‐Based Batteries 8.3.1 Al Electrodeposition in CILs and Their Use in Rechargeable Al‐Based Batteries 8.3.2 Al Electrodeposition Using Alternative Electrolytes and Their Use in Rechargeable Al‐Based Batteries 8.4 Rechargeable Aluminum Batteries Classification 8.4.1 Metal Oxide/Sulfide‐Based Aluminum Batteries 8.4.2 Polymer‐Based Aluminum Batteries 8.4.3 Graphite‐Based Aluminum Batteries 8.5 Rechargeable Aluminum Batteries Based on Graphitic Cathodes 8.5.1 Carbon Paper 8.5.2 Pyrolytic Graphite 8.5.3 Graphitic Foam 8.5.4 Graphene‐Based Cathode 8.5.5 Graphite Flakes‐Based Cathodes 8.6 Conclusions References Chapter 9 Al‐Air Batteries 9.1 Introduction 9.2 Aluminum Anodes 9.2.1 Al Alloying Elements 9.2.2 Research Progress of Al Anodes 9.2.2.1 Aluminum Microalloying 9.2.2.2 Heat Treatment of Al Anodes 9.2.2.3 Processing of Al Anodes 9.2.2.4 Surface coating on Al anodes 9.3 Air Cathodes 9.3.1 Structure of Air Cathodes 9.3.2 Integrated Cathode 9.3.3 Oxygen Reduction Reaction 9.3.4 Electrocatalysts 9.3.4.1 Precious Metals and Alloys 9.3.4.2 Transition Metal Oxides 9.3.4.3 Carbon‐Based Catalysts 9.3.4.4 Single‐Atom Catalysts 9.4 Electrolytes 9.4.1 Aqueous Electrolytes 9.4.2 Corrosion Inhibitors 9.4.3 Polymer Electrolytes 9.5 Al–Air Battery Structure Design 9.6 Recycle of Al–Air Batteries 9.7 Rechargeable Al–Air Batteries 9.8 Summary and Outlook References Chapter 10 Dual‐Ion Battery 10.1 Cation–Anion Dual‐Ion Battery 10.1.1 Introduction 10.1.2 Cathode Materials 10.1.2.1 Graphitic Materials 10.1.2.2 Organic Materials 10.1.2.3 Other Materials 10.1.3 Anode Materials 10.1.3.1 Metallic Materials 10.1.3.2 Alloying‐Type Materials 10.1.3.3 Intercalation‐Type Materials 10.1.3.4 Conversion‐Type Materials 10.1.4 Electrolyte 10.1.4.1 Organic Electrolyte 10.1.4.2 Ionic Liquid Electrolyte 10.1.4.3 Aqueous Electrolyte 10.2 Multi‐Ion Battery 10.2.1 Triple‐Ion Battery 10.2.1.1 Dual Cation–Anion Battery 10.2.1.2 Dual Anion–Cation Battery 10.2.2 Quadruple‐Ion Battery 10.3 Summary and Perspective Acknowledgments References Index EULA