دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Orhan Özhan
سری:
ISBN (شابک) : 3030988457, 9783030988456
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 642
[643]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 Mb
در صورت تبدیل فایل کتاب Basic Transforms for Electrical Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تبدیل های پایه برای مهندسی برق نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword Contents List of Symbols and Abbreviations Part I Background 1 Complex Numbers 1.1 Representation of Complex Numbers 1.2 Euler's Identity 1.2.1 Complex Exponential 1.2.2 Conjugate of a Complex Number 1.3 Mathematical Operations 1.3.1 Identity 1.3.2 Addition and Subtraction 1.3.3 Multiplication and Division 1.3.4 Rotating a Number in Complex Plane 1.4 Roots of a Complex Number 1.5 Applications of Complex Numbers 1.5.1 Complex Numbers Versus Trigonometry 1.5.2 Integration 1.5.3 Phasors 1.5.4 3-Phase Electric Circuits 1.5.5 Negative Frequency 1.5.6 Complex Numbers in Mathematics Software 1.5.7 Roots of a Polynomial Further Reading Problems 2 Functions of a Complex Variable 2.1 Limit of a Complex Function 2.2 Derivative of Complex Functions and Analyticity 2.3 Cauchy–Riemann Conditions 2.4 Rules of Differentiation 2.5 Harmonic Functions 2.6 Applications of Complex Functions and Analyticity 2.6.1 Elementary Functions Polynomial and Rational Functions Exponential Function of a Complex Variable Logarithm of a Complex Number Trigonometric Functions of a Complex Variable Hyperbolic Functions of a Complex Variable A Worked-Out Example: The Inverse Cosine Function 2.6.2 Conformal Mapping 2.6.3 Fractals Further Reading Problems 3 Complex Integration 3.1 Integrating Complex Functions of a Real Variable 3.2 Contours 3.3 Integrating Functions of a Complex Variable 3.4 Numerical Computation of the Complex Integral 3.5 Properties of the Complex Integral 3.6 The Cauchy–Goursat Theorem 3.6.1 Integrating Differentiable Functions 3.6.2 The Principle of Contour Deformation 3.6.3 Cauchy's Integral for Multiply Connected Domains 3.7 Cauchy's Integral Formula 3.8 Higher-Order Derivatives of Analytic Functions 3.9 Complex Sequences and Series 3.10 Power Series Expansions of Functions 3.10.1 Taylor and Maclaurin Series 3.10.2 Differentiation and Integration of Power Series 3.11 Laurent Series 3.12 Residues 3.12.1 Residue Theorem 3.12.2 Residue at Infinity 3.12.3 Finding Residues 3.13 Residue Integration of Real Integrals 3.14 Fourier Integrals Further Reading Problems Part II Transforms 4 The Laplace Transform 4.1 Motivation to Use Laplace Transform 4.2 Definition of the Laplace Transform 4.3 Properties of the Laplace Transform 4.3.1 Linearity 4.3.2 Real Differentiation 4.3.3 Real Integration 4.3.4 Differentiation by s 4.3.5 Real Translation 4.3.6 Complex Translation 4.3.7 Periodic Functions 4.3.8 Laplace Transform of Convolution 4.3.9 Initial Value Theorem 4.3.10 Final Value Theorem 4.4 The Inverse Laplace Transform 4.4.1 Real Poles 4.4.2 Complex Poles 4.4.3 Multiple Poles 4.5 More on Poles and Zeros 4.5.1 Factoring Polynomials 4.5.2 Poles and Time Response 4.5.3 An Alternative Way to Solve Differential Equations 4.6 Inverse Laplace Transform by Contour Integration 4.7 Applications of Laplace Transform 4.7.1 Electrical Systems 4.7.2 Inverse LTI Systems 4.7.3 Evaluation of Definite Integrals Problems 5 The Fourier Series 5.1 Vectors and Signals 5.2 The Fourier Series 5.3 Calculating Fourier Series Coefficients 5.4 Properties of the Fourier Series 5.4.1 Linearity 5.4.2 Symmetry Properties Even Symmetry Odd Symmetry Half-Period Symmetry 5.4.3 Shifting in Time 5.4.4 Time Reversal 5.4.5 Differentiation 5.4.6 Integration 5.5 Parseval's Relation 5.6 Convergence of Fourier Series 5.7 Gibbs Phenomenon 5.8 Discrete-Time Fourier Series 5.8.1 Periodic Convolution 5.8.2 Parseval's Relation for Discrete-Time Signals 5.9 Applications of Fourier Series Problems 6 The Fourier Transform 6.1 Introduction 6.2 Definition of the Fourier Transform 6.3 Fourier Transform Versus Fourier Series 6.4 Convergence of the Fourier Transform Dirichlet Conditions 6.5 Properties of the Fourier Transform 6.5.1 Symmetry Issues 6.5.2 Linearity 6.5.3 Time Scaling 6.5.4 Time Reversal 6.5.5 Time Shift 6.5.6 Frequency Shift (Amplitude Modulation) 6.5.7 Differentiation with Respect to Time 6.5.8 Integration with Respect to Time 6.5.9 Duality 6.5.10 Convolution 6.5.11 Multiplication in Time Domain 6.5.12 Parseval's Relation 6.5.13 Two-way Transform: Fourier Integral Theorem 6.5.14 Fourier Transform of a Periodic Time Function 6.6 Sampling 6.6.1 Impulse-Sampling and Aliasing 6.6.2 Natural Sampling: The Zero-Order Hold 6.6.3 Undersampling 6.7 Fourier Transform Versus Laplace Transform 6.8 Discrete-Time Signals 6.9 Fourier Transform of Discrete Signals 6.9.1 The Discrete Fourier Transform 6.10 Two-Dimensional Fourier Transform 6.11 Applications 6.11.1 Signal Processing Spectrogram Cepstrum Analysis Correlation and Energy Spectrum Filtering 6.11.2 Circuit Applications 6.11.3 Communication Propagation Time-Division Multiplexing (TDM) Frequency-Division Multiplexing (FDM) Amplitude Modulation and Demodulation FM Slope Detectors 6.11.4 Instrumentation Further Reading Problems 7 Short-Time-Fourier Transform 7.1 Short-Time Fourier Transform 7.1.1 Frequency Resolution 7.1.2 Inverse Short-Time Fourier Transform 7.1.3 Discrete-Time STFT Windowing 7.2 Gabor Transform 7.3 STFT in LabVIEW Problems 8 Fast Fourier Transform 8.1 Radix-2 FFT Algorithms 8.1.1 Decimation in Time 8.1.2 Decimation in Frequency 8.2 Computer Implementation 8.2.1 LabVIEW Implementation 8.2.2 Implementing FFT in C Further Reading Assignments 9 z-Transform 9.1 Definition of the z-Transform 9.2 Region of Convergence for the z-Transform 9.3 z-Transform Properties 9.3.1 Linearity 9.3.2 Time Shifting 9.3.3 Multiplication by an Exponential Sequence 9.3.4 Multiplication by n 9.3.5 Division by n 9.3.6 Conjugate of a Complex Sequence 9.3.7 Convolution of Sequences 9.3.8 Time Reversal 9.3.9 Initial Value Theorem 9.4 The Inverse z-Transform 9.4.1 Inversion by Partial Fraction Expansion Complex Roots Multiple Roots 9.4.2 Inverse z-Transform Using Contour Integration 9.5 Complex Convolution Theorem 9.6 Parseval Theorem 9.7 One-Sided z-Transform 9.8 Difference Equations 9.9 Conversions Between Laplace Transform and z–Transform 9.10 Fourier Transform of Discrete-Time Signals 9.11 Applications of the z-Transform 9.11.1 Digital Oscillator A 3-Tap FIR Filter Derivative in Discrete-Time Fibonacci Sequence in Closed Form 9.12 Discrete Signal Processing vs Digital Technologies: A Historical Retrospect Further Reading Problems 10 Discrete Cosine Transform 10.1 From DFT to DCT 10.1.1 One-Dimensional Signal 10.1.2 Two-Dimensional Signal 10.2 DCT Implementation 10.3 DCT Applications Further Reading Problems References Index