دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2 نویسندگان: Shawn R. German, Olga Budge سری: ISBN (شابک) : 9781630815554, 1630815551 ناشر: Artech House سال نشر: 2020 تعداد صفحات: 837 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 48 مگابایت
در صورت تبدیل فایل کتاب Basic Radar Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل رادار اساسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Basic Radar Analysis, Second Edition Contents Chapter 1 Radar Basics 1.1 Introduction 1.2 Radar Types 1.3 Range Measurement 1.4 Ambiguous Range 1.5 Processing window and Instrumented Range 1.6 Range-Rate Measurement: Doppler 1.7 Decibels 1.8 dB Arithmetic 1.9 Complex Signal Notation 1.10 Radar Block Diagram 1.11 Exercises References Chapter 2 Radar Range Equation 2.1 Introduction 2.2 Basic Radar Range Equation 2.2.1 Derivation of ES 2.2.1.1 The Transmitter 2.2.1.2 The Antenna 2.2.1.3 Effective Isotropic Radiated Power 2.2.1.4 Antenna Directivity 2.2.1.5 The Target and Radar Cross Section 2.2.1.6 Antenna Again 2.2.1.7 Antenna Directivity Again 2.2.1.8 Losses 2.2.2 Derivation of EN 2.3 A Power Approach to SNR 2.4 Radar Range Equation Example 2.5 Detection Range 2.6 Search Radar Range Equation 2.7 Search Radar Range Equation Example 2.8 Radar Range Equation Summary 2.9 Exercises References Appendix 2A: Derivation of Search Solid Angle Equation Chapter 3 Radar Cross Section 3.1 Introduction 3.2 RCS of Simple Shapes 3.3 Swerling RCS Models 3.3.1 Swerling Statistics 3.3.2 Swerling Fluctuation Models 3.3.3 Math Behind the Fluctuation Model 3.4 Relation of Swerling Models to Actual Targets 3.5 Simulating Swerling Targets 3.6 Frequency Agility and SW2 or SW4 Targets 3.7 Exercises References Chapter 4 Noise 4.1 Introduction 4.2 Noise in Resistive Networks 4.2.1 Thevenin Equivalent Circuit of a Noisy Resistor 4.2.2 Multiple Noisy Resistors 4.3 Equivalent/Effective Noise Temperature for Active Devices 4.4 Noise Figure 4.4.1 Derivation of Noise Figure 4.4.2 Attenuators 4.5 Noise Figure of Cascaded Devices 4.6 An Interesting Example 4.7 Output Noise Energy When the Source Temperature Is Not T0 4.8 A Note About Cascaded Devices and the Radar Range Equation 4.9 Cascaded Attenuators 4.10 Exercises References Chapter 5 Radar Losses 5.1 Introduction 5.2 Transmit Losses 5.3 Antenna Losses 5.4 Propagation Losses 5.5 Receive Antenna and RF Losses 5.6 Processor and Detection Losses 5.7 Exercises References Appendix 5A: Waveguide Attenuation 5A.1 Exercises Appendix 5B: Atmospheric and Rain Attenuation 5B.1 Function tropatten.m 5B.1.1 Compute International Civil Aviation Organization (ICAO) Standard Atmosphere 1964 5B.1.2 Absorption Coefficient for Oxygen 5B.1.3 Absorption Coefficient for Water Vapor 5B.2 Function troprefract.m 5B.3 Function troploss.m 5B.4 Function rainAttn2way.m Chapter 6 Detection Theory 6.1 Introduction 6.2 Noise in Receivers 6.2.1 IF Configuration 6.2.2 Baseband Configuration 6.3 Signal in Receivers 6.3.1 Introduction and Background 6.3.2 Signal Model for SW0/SW5 Targets 6.3.3 Signal Model for SW1/SW2 Targets 6.3.4 Signal Model for SW3/SW4 Targets 6.4 Signal-Plus-Noise in Receivers 6.4.1 General Formulation 6.4.2 Signal-Plus-Noise Model for SW1/SW2 Targets 6.4.3 Signal-Plus-Noise Model for SW0/SW5 Targets 6.4.4 Signal-Plus-Noise Model for SW3/SW4 Targets 6.5 Detection Probability 6.5.1 Introduction 6.5.2 Amplitude Detector Types 6.5.3 Detection Logic 6.5.4 Calculation of Pd and Pfa 6.5.4.1 False Alarm Probability 6.5.4.2 Detection Probability SW0/SW5 Target SW1/SW2 Target SW3/SW4 Target 6.5.5 Behavior versus Target Type 6.6 Determination of False Alarm Probability 6.6.1 Pfa Computation Example 6.6.2 Detection Contour Example 6.7 Summary 6.8 Exercises References Chapter 7 CFAR Processing 7.1 Introduction 7.2 Cell-Averaging CFAR 7.2.1 Estimation of Interference Power 7.2.2 CA-CFAR Analysis 7.2.3 CA-CFAR Example 7.2.4 CA-CFAR FIR Implementation 7.2.5 CFAR Processing at the Edges of Instrumentation 7.3 CA-CFAR with Greatest-of Selection 7.3.1 GO-CFAR Example 7.4 CA-CFAR with Smallest of Selection 7.4.1 SO-CFAR Example 7.5 Ordered Statistic CFAR 7.5.1 OS-CFAR Example 7.6 Minimum Selected CA-CFAR 7.6.1 MSCA-CFAR Algorithm 7.6.2 MSCA-CFAR Analysis 7.6.3 MSCA-CFAR Example 7.7 Summary 7.7.1 CFAR Problems and Remedies 7.7.2 CFAR Scale Factors 7.8 Exercises References Appendix 7A: Maximum Likelihood Estimation Appendix 7B: Toeplitz Matrix and CFAR Chapter 8 Matched Filter 8.1 Introduction 8.2 Problem Definition 8.3 Problem Solution 8.4 Matched Filter Examples 8.4.1 General Formulation 8.4.2 Response for an Unmodulated Pulse 8.4.3 Response for an LFM Pulse 8.5 Summary 8.6 Closing Comments 8.7 Exercises References Chapter 9 Detection Probability Improvement Techniques 9.1 Introduction 9.2 Coherent Integration 9.2.1 SNR Analysis 9.2.2 Detection Analysis 9.3 Noncoherent Integration 9.3.1 Coherent and Noncoherent Integration Comparison 9.3.2 Detection Example with Coherent and Noncoherent Integration 9.4 Cumulative Detection Probability 9.4.1 Cumulative Detection Probability Example 9.5 m-of-n Detection 9.5.1 m-of-n Detection Example for SW0/SW5, SW2 and SW4 Targets 9.5.2 m-of-n and Noncoherent Comparison for SW1 and SW2 Targets 9.6 Exercises Appendix 9A: Noise Autocorrelation at the Output of a Matched Filter Appendix 9B: Probability of Detecting SW1 and SW3 Targets on m Closely Spaced Pulses 9B.1 Marcum Q Function Appendix 9C: Cumulative Detection Probability Chapter 10 Ambiguity Function 10.1 Introduction 10.2 Ambiguity Function Development 10.3 Example 1: Unmodulated Pulse 10.4 Example 2: LFM Pulse 10.5 Numerical Techniques 10.6 Ambiguity Function Generation Using the FFT 10.7 Exercises References Chapter 11 Waveform Coding 11.1 Introduction 11.2 FM Waveforms 11.2.1 LFM with Amplitude Weighting 11.2.2 Nonlinear FM 11.2.2.1 Fowle Example with Uniform Um(f ) 11.2.2.2 Fowle Example with Cosine on a Pedestal Um(f ) 11.2.2.3 NLFM Design Procedures 11.3 Phase-coded Pulses 11.3.1 Frank Polyphase Coding 11.3.2 Barker-coded Waveforms 11.3.3 PRN-coded Pulses 11.3.3.1 Mismatched PRN Processing 11.4 Step Frequency Waveforms 11.4.1 Doppler Effects 11.5 Costas Waveforms 11.5.1 Costas Waveform Example 11.6 Closing Comments 11.7 Exercises References Appendix 11A: LFM and the sinc2(x) Function Chapter 12 Stretch Processing 12.1 Introduction 12.2 Stretch Processor Configuration 12.3 Stretch Processor Operation 12.4 Stretch Processor SNR 12.4.1 Matched Filter 12.4.2 Stretch Processor 12.5 Practical Implementation Issues 12.5.1 Stretch Processor Example 12.6 Range-rate Effects 12.6.1 Expanded Transmit and Receive Signal Models 12.6.2 Stretch Processor Modification 12.6.3 Slope Mismatch Effects 12.6.3.1 Slope Mismatch Case 1: (hṘ = ( – no compensation Slope Mismatch Example 1 Slope Mismatch Example 2 12.6.3.2 Slope Mismatch Case 2: (hṘ = (r – Perfect Compensation 12.6.3.3 Slope Mismatch Case 3: (hṘ = ( (1(2Ṙh/c)2 – Partial Compensation 12.6.4 Range-rate Effects on Range Bias 12.6.4.1 Case 1 – (hṘ = ( 12.6.4.2 Case 2: Imperfect Estimate of Ṙ 12.6.5 Doppler Frequency Measurement Effects 12.6.6 A Matched Filter Perspective 12.7 Exercises References Chapter 13 Phased Array Antenna Basics 13.1 Introduction 13.2 Two-Element Array Antenna 13.2.1 Transmit Perspective 13.2.2 Receive Perspective 13.3 N-Element Linear Array 13.4 Directive Gain Pattern (Antenna Pattern) 13.5 Beamwidth, Sidelobes, and Amplitude Weighting 13.6 Steering 13.6.1 Time-delay Steering 13.6.2 Phase Steering 13.6.3 Phase Shifters 13.7 Element Pattern 13.8 Array Factor Relation to the Discrete-time Fourier Transform 13.9 Planar Arrays 13.9.1 Weights for Beam Steering 13.9.2 Array Shapes and Element Locations (Element Packing) 13.9.3 Feeds 13.9.4 Amplitude Weighting 13.9.5 Computing Antenna Patterns for Planar Arrays 13.9.5.1 Planar Arrays with Rectangular Packing 13.9.5.2 Planar Arrays with Triangular Packing 13.9.6 Directive Gain Pattern 13.9.7 Grating Lobes 13.9.7.1 Grating Lobes in Arrays with Rectangular Packing 13.9.7.2 Grating Lobes in Arrays with Triangular Packing 13.10 Polarization 13.11 Reflector Antennas 13.12 Other Antenna Parameters 13.13 Exercises References Appendix 13A: An Equation for Taylor Weights Appendix 13B: Computation of Antenna Patterns 13B.1 Linear Arrays 13B.2 Planar Arrays 13B.2.1 Rectangular Packing 13B.2.2 Triangular Packing Chapter 14 AESA Basics and Related Topics 14.1 Introduction 14.2 T/R Module 14.3 Time-delay Steering and Wideband Waveforms 14.3.1 Subarray Size, Scan Angle, and Waveform Bandwidth 14.3.2 Subarray Pattern Distortion Examples 14.3.3 Array Beam Forming with TDUs 14.4 Simultaneous Multiple Beams 14.4.1 Overlapped Subarrays 14.4.2 Nonuniform Subarray Sizes 14.4.3 Transmit Array Considerations 14.5 AESA Noise Figure 14.5.1 T/R Module Noise Figure 14.5.2 Subarray Gain and Noise Figure 14.5.3 Array Gain and Noise Figure 14.5.4 AESA Noise Figure Example 14.6 Exercises References Appendix 14A: Derivation of the matched filter output for an AESA (Equation 14.10) Chapter 15 Signal Processors 15.1 Introduction 15.2 Signal Processor Structure References Chapter 16 Signal Processor Analysis 16.1 Introduction 16.2 Signal Model Generation 16.2.1 Signal Model: Time Domain Analysis 16.2.2 Signal Model: Frequency Domain Analysis 16.2.3 Relation of PC and PS to the Radar Range Equation 16.3 Signal Processor Analyses 16.3.1 Background 16.4 Exercises References Appendix 16A: Derivation Signal Processor Input Spectrum Appendix 16B: Proof that r(t) is Wide-Sense Cyclostationary Chapter 17 Clutter Model 17.1 Introduction 17.2 Ground Clutter Model 17.2.1 Ground Clutter RCS Model 17.2.2 Ground Clutter Spectrum Model 17.3 Rain Clutter Model 17.3.1 Rain Clutter RCS Model 17.3.2 Rain Clutter Spectral Model 17.4 Exercises References Chapter 18 Moving Target Indicator (MTI) 18.1 Introduction 18.1.1 MTI Response Normalization 18.2 MTI Clutter Performance 18.2.1 Clutter Attenuation 18.2.1.1 Gaussian Spectrum 18.2.1.2 Exponential Spectrum 18.2.2 SCR Improvement 18.3 Ground Clutter Example 18.4 Rain Clutter Example 18.5 Phase Noise 18.5.1 Higher Order MTI Processors 18.5.2 Staggered PRIs 18.5.3 MTI Transients 18.6 Exercises References Chapter 19 Digital Pulsed Doppler Processors 19.1 Introduction 19.2 Pulsed Doppler Clutter 19.3 Signal Processor Configuration 19.4 Digital Signal Processor Analysis Techniques 19.4.1 Phase Noise and Range Correlation Effects 19.4.2 ADC Considerations 19.5 Summary and Rules of Thumb 19.6 HPRF Pulsed Doppler Processor Example 19.7 MPRF Pulsed Doppler Processor Example 19.8 LPRF Pulsed Doppler Signal Processor Example 19.9 Exercises References Appendix 19A: Derivation of Appendix 19B: FFT Frequency Response Chapter 20 Analog Pulsed Doppler Processors 20.1 Introduction 20.2 Analog Pulsed Doppler Signal Processor Example 20.3 Exercises References Chapter 21 Chaff Analysis 21.1 Introduction 21.2 chaff analysis example 21.3 Exercises References Chapter 22 Radar Receiver Basics 22.1 Introduction 22.2 Single-Conversion Superheterodyne Receiver 22.3 Dual-Conversion Superheterodyne Receiver 22.4 Receiver Noise 22.5 The 1-dB Gain Compression Point 22.6 Dynamic Range 22.6.1 Sensitivity 22.6.1.1 Tangential Sensitivity 22.6.2 Minimum Detectable and Minimum Discernable Signal 22.6.3 Intermodulation Distortion 22.6.4 Required Dynamic Range 22.7 Cascade Analysis 22.7.1 Cascade Analysis Conventions 22.7.2 Procedure 22.7.3 Power Gain 22.7.4 Noise Figure and Noise Temperature 22.7.5 1-dB Compression Point 22.7.6 Second-Order Intercept 22.7.7 Third-Order Intercept 22.8 Digital Receiver 22.8.1 Bandpass Sampling 22.8.2 Digital Down conversion 22.8.3 Practical DDC 22.8.4 CIC Filter Structure 22.8.4.1 Basic Integrator 22.8.4.2 Basic Comb Filter 22.8.4.3 CIC Filter Frequency Response 22.8.4.4 Example: CIC Decimation Filter 22.8.5 Analog-to-Digital Converter 22.8.5.1 Quantization 22.8.5.2 Quantization Error 22.8.5.3 Quantization Noise 22.8.5.4 ADC Noise Figure 22.8.5.5 Dither 22.9 Receiver Configurations 22.10 Exercises References Appendix 22A: Digital Down conversion Using Band-pass Sampling Chapter 23 Introduction to Synthetic ApertureRadar Signal Processing 23.2 Background 23.2.1 Linear Array Theory 23.2.2 Transition to SAR Theory 23.1 Introduction 23.3 Development of SAR-Specific Equations 23.4 Types of SAR 23.4.1 Theoretical Limits for Strip Map SAR 23.4.2 Effects of Imaged Area Width on Strip Map SAR Resolution 23.5 SAR Signal Characterization 23.5.1 Derivation of the SAR Signal 23.5.2 Examination of the Phase of the SAR Signal 23.5.2.1 Linear Phase, or Constant Frequency, Term 23.5.2.2 Quadratic Phase, or LFM, Term 23.5.3 Extracting the Cross-Range Information 23.6 Practical Implementation 23.6.1 A Discrete-Time Model 23.6.2 Other Considerations 23.7 An Algorithm for Creating a Cross-Range Image 23.8 Example 1 - Generation of a Cross-range SAR Image 23.9 Down-Range and Cross-Range Imaging 23.9.1 Signal Definition 23.9.1.1 Removal of the Carrier and Gross Doppler 23.9.1.2 Single-Pulse Matched Filter 23.9.1.3 Generation of the Sampled Signal 23.9.2 Preliminary Processing Considerations 23.9.2.1 Range Cell Migration Correction 23.9.2.2 RCMC Algorithm 23.9.3 Quadratic Phase Removal and Image Formation 23.10 Algorithm for Creating a Cross- and Down-Range Image 23.11 Example 2: Cross- and Down-range SAR Image 23.12 An Image-Sharpening Refinement 23.13 Closing Remarks 23.14 Exercises References Chapter 24 Introduction to Space-Time Adaptive Processing 24.1 Introduction 24.2 Spatial Processing 24.2.1 Signal Plus Noise 24.2.2 Signal Plus Noise and Interference 24.2.3 Example 1: Spatial Processing 24.3 temporal processing 24.3.1 Signal 24.3.2 Noise 24.3.3 Interference 24.3.4 Doppler Processor 24.3.5 Example 2: Temporal Processing 24.4 Adaptivity Issues 24.5 Space-Time Processing 24.5.1 Example 3: Space-Time Processing 24.5.2 Example 4: Airborne Radar Clutter Example 24.6 Adaptivity Again 24.7 Practical Considerations 24.8 Exercises References Chapter 25 Sidelobe Cancellation 25.1 Introduction 25.2 Interference Canceller 25.3 Interference Cancellation Algorithm 25.3.1 Single Interference Signal 25.3.2 Simple Canceler Example 25.3.3 Multiple Interference Sources 25.4 SLC Implementation Considerations 25.4.1 Form of vm(t) and va(t) 25.4.2 Properties of vs(t), vI(t), nm(t), and nan(t) 25.4.3 Scaling of Powers 25.4.4 Two Auxiliary Channel Open-Loop SLC Example 25.4.5 Performance Measures 25.4.6 Practical Implementation Considerations 25.4.7 Two Auxiliary Channel Open-Loop SLC Example with SMI 25.5 Howells-Applebaum Sidelobe Canceller 25.5.1 Howells-Applebaum Implementation 25.5.2 IF Implementation 25.5.3 Single-Loop Howells-Applebaum SLC Example 25.5.4 Two-Loop Howells-Applebaum SLC Example 25.6 Sidelobe Blanker 25.7 Exercises References Appendix 25A: Derivation of (25.40) Chapter 26 Advances in Radar 26.1 Introduction 26.2 MIMO Radar 26.3 Cognitive Radar 26.4 Other Advancements in Radar Theory 26.5 Hardware Advancements 26.6 Conclusion References Appendix A Data Windowing Functions Acronyms and Abbreviations About the Authors Index