دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: S. K. Bhattacharya, R. S. Choubey, Anubhuti Khare سری: ISBN (شابک) : 9788131767061, 9789332509429 ناشر: Pearson Education سال نشر: 2011 تعداد صفحات: [512] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Basic Electrical and Electronics Engineering : For RGPV Subject Code BE-104 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی پایه برق و الکترونیک: برای RGPV کد موضوع BE-104 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Brief Contents Contents Preface About the Author Roadmap to the Syllabus Chapter 1: Basic Concepts, Laws, and Principles 1.1 Introduction 1.2 Atomic Structure and Electric Charge 1.3 Conductors, Insulators, and Semiconductors 1.4 Electric Field and Magnetic Field 1.5 Electric Current, Resistance, Potential, and Potential Difference 1.5.1 Electric Current 1.5.2 Resistance 1.5.3 Potential and Potential Difference 1.6 Ohm’s Law 1.7 The Effect of Temperature on Resistance 1.8 Work, Power, and Energy 1.8.1 Work 1.8.2 Power 1.8.3 Energy 1.8.4 Units of Work, Power, and Energy 1.9 Electromagnetism and Electromagnetic Induction 1.9.1 Introduction 1.9.2 Magnetic Field Around a Current-carrying Conductor 1.9.3 Magnetic Field Around a Coil 1.9.4 A Current-carrying Conductor Placed in a Magnetic Field 1.9.5 A Current-carrying Coil Placed in a Magnetic Field 1.10 Laws of Electromagnetic Induction 1.11 Induced EMF in a Coil Rotating in a Magnetic Field 1.12 EMF Induced in a Conductor 1.13 Dynamically Induced EMF and Statically Induced EMF 1.14 Self-induced EMF and Mutually Induced EMF 1.15 Self-Inductance of a Coil 1.16 Mutual Inductance 1.17 Inductance of Coils Connected in Series having a Common Core 1.18 Energy Stored in a Magnetic Field 1.19 Electrical Circuit Elements 1.19.1 Resistors 1.19.2 Inductors 1.19.3 Capacitors 1.20 Energy Stored in a Capacitor 1.21 Capacitor in Parallel and in Series 1.22 Review Questions Chapter 2: DC Networks and Network Theorems 2.1 Introduction 2.2 DC Network Terminologies, Voltage, and Current Sources 2.2.1 Network Terminologies 2.2.2 Voltage and Current Sources 2.2.3 Source Transformation 2.3 Series–Parallel Circuits 2.3.1 Series Circuits 2.3.2 Parallel Circuits 2.3.3 Series–Parallel Circuits 2.4 Voltage and Current Divider Rules 2.4.1 Voltage Divider Rule 2.4.2 Current Divider Rule 2.5 Kirchhoff’s Laws 2.5.1 Kirchhoff’s Current Law 2.5.2 Kirchhoff’s Voltage Law 2.5.3 Solution of Simultaneous Equations Using Cramer’s Rule 2.5.4 Method of Evaluating Determinant 2.6 Maxwell’s Mesh Current Method 2.7 Nodal Voltage Method (Nodal Analysis) 2.8 Network Theorems 2.8.1 Superposition Theorem 2.8.2 Thevenin’s Theorem 2.8.3 Norton’s Theorem 2.9 Star–Delta Transformation 2.9.1 Transforming Relations for Delta to Star 2.9.2 Transforming Relations for Star to Delta 2.10 Review Questions Chapter 3: AC Fundamentals and Single-phase Circuits 3.1 Introduction 3.1.1 Introduction 3.1.2 Generation of Alternating Voltage in an Elementary Generator 3.1.3 Concept of Frequency, Cycle, Time Period, Instantaneous Value, Average Value, and Maximum Value 3.1.4 Sinusoidal and Non-sinusoidal Wave Forms 3.1.5 Concept of Average Value and Root Mean Square (RMS) Value of an Alternating Quantity 3.1.6 Analytical Method of Calculation of RMS Value, Average Value, and Form Factor 3.1.7 RMS and Average Values of Half-wave-rectified Alternating Quantity 3.1.8 Concept of Phase and Phase Difference 3.2 Single-Phase AC Circuits 3.2.1 Behaviour of R, L, and C in AC Circuits 3.2.2 L–R Series Circuit 3.2.3 Apparent Power, Real Power, and Reactive Power 3.2.4 Power in an AC Circuit 3.2.5 R—C Series Circuit 3.2.6 R–L–C Series Circuit 3.3 Review Questions Chapter 4: Three-phase System 4.1 Introduction 4.2 Advantages of Three-Phase Systems 4.3 Generation of Three-Phase Voltages 4.4 Terms Used in Three-Phase Systems and Circuits 4.5 Three-Phase Winding Connections 4.5.1 Star Connection 4.5.2 Delta Connection 4.5.3 Relationship of Line and Phase Voltages, and Currents in a Star-connected System 4.5.4 Relationship of Line and Phase Voltages and Currents in a Delta-connected System 4.6 Active and Reactive Power 4.7 Comparison Between Star Connection and Delta Connection 4.8 Review Questions Chapter 5: Electromagnetism and Magnetic Circuits 5.1 Introduction 5.1.1 Field Around a Current-carrying Conductor 5.1.2 Magnetic Flux Density 5.1.3 Magnetic Field Strength 5.1.4 Permeability 5.1.5 Relative Permeability 5.2 Magnetic Field Due to Current-Carrying Conductor Laws of Electromagnetism 5.2.1 Ampere’s Circuital Law 5.2.2 Biot–Savart Law 5.2.3 Application of Biot–Savart Law 5.3 Magnetization Curve of a Magnetic Material 5.4 Hysteresis Loss and Eddy Current Loss in Magnetic Materials 5.4.1 Hysteresis Loss 5.4.2 Eddy Current Loss 5.5 Magnetic Circuits 5.6 Comparison Between Magnetic and Electric Circuits 5.7 Magnetic Leakage and Fringing 5.8 Series and Parallel Magnetic Circuits 5.9 Attractive Force or the Lifting Power of Electromagnets 5.10 Review Questions Chapter 6: Transformers 6.1 Introduction 6.2 Applications of Transformers 6.3 Basic Principle and Constructional Details 6.3.1 Basic Principle 6.3.2 Constructional Details 6.4 Core-Type and Shell-Type Transformers 6.4.1 Power Transformers and Distribution Transformers 6.5 EMF Equation 6.6 Transformer on No-Load 6.7 Transformer on Load 6.8 Transformer Circuit Parameters and Equivalent Circuit 6.9 Phasor Diagram of a Transformer 6.10 Concept of Voltage Regulation 6.11 Concept of an Ideal Transformer 6.12 Transformer Tests 6.12.1 Open-circuit Test or No-load Test 6.12.2 Short-circuit Test 6.13 Efficiency of a Transformer 6.14 Condition for Maximum Efficiency 6.15 All-Day Efficiency 6.16 Calculation of Regulation of a Transformer 6.17 Factors Affecting Losses in a Transformer 6.18 Solved Numerical Problems 6.19 Review Questions Chapter 7: DC Machines 7.1 Introduction 7.1.1 Nature of Load Current When Output is Taken Out Through Brush and Slip-ring Arrangement 7.1.2 Nature of Load Current When Output is Taken Through Brush and Commutator Arrangement 7.1.3 Function of Brush and Commutators in Motoring Action 7.2 Constructional Details 7.2.1 The Field System 7.2.2 The Armature 7.2.3 Armature Winding 7.2.4 Types of Armature Winding 7.3 EMF Equation of a DC Machine 7.3.1 Induced EMF is Equated to Flux Cut Per Second 7.4 Types of DC Machines 7.5 Characteristics of DC Generators 7.5.1 No-load Characteristics 7.5.2 Load Characteristics 7.6 Applications of DC Generators 7.7 Operation of a Dc Machine as a Motor 7.7.1 Working Principle of a DC Motor 7.7.2 Changing the Direction of Rotation 7.7.3 Energy Conversion Equation 7.8 Torque Equation 7.9 Starting a DC Motor 7.10 Speed Control of DC Motors 7.10.1 Voltage Control Method 7.10.2 Field Control Method 7.10.3 Armature Control Method 7.11 Starter for a DC Motor 7.11.1 Three-point Starter 7.11.2 Four-point Starter 7.12 Types and Characteristics of DC Motors 7.12.1 Characteristics of DC Shunt Motors 7.12.2 Characteristics of DC Series Motors 7.12.3 Characteristics of DC Compound Motors 7.13 Losses And Efficiency 7.13.1 Losses in a DC Machine 7.13.2 Efficiency of DC Machine 7.13.3 Condition for Maximum Efficiency 7.14 Applications of DC Machines 7.14.1 DC Generators 7.14.2 DC Motors 7.14.3 DC Series Motors 7.14.4 DC Compound Motors 7.15 Solved Numerical Problems 7.16 Review Questions Chapter 8: Induction and Synchronous Machines 8.1 Introduction 8.2 Constructional Details 8.3 Double Revolving Field Theory and Principle of Working of Single-Phase Induction Motors 8.4 Torque–Speed Characteristic 8.5 Split-Phase Induction Motors 8.6 Shaded Pole Induction Motor 8.7 Single-Phase AC Series Motors 8.8 Operation of a Series Motor on DC and AC (Universal Motors) 8.9 Single-Phase Synchronous Motors 8.9.1 Reluctance Motors 8.9.2 Hysteresis Motors 8.10 Stepper Motors 8.11 Review Questions Chapter 9: Three-phase Induction Motors 9.1 Introduction 9.2 Constructional Details 9.3 Windings and Pole Formation 9.4 Production of Rotating Magnetic Field 9.5 Principle of Working 9.6 Rotor-Induced EMF, Rotor Frequency, Rotor Current 9.7 Losses in Induction Motors 9.8 Power Flow Diagram 9.9 Torque Equation 9.10 Starting Torque 9.11 Condition for Maximum Torque 9.12 Torque–Slip Characteristic 9.13 Variation of Torque–Slip Characteristic With Change in Rotor–Circuit Resistance 9.14 Starting of Induction Motors 9.14.1 Direct-On-Line Starting 9.14.2 Manual Star–Delta Starter 9.15 Speed Control of Induction Motors 9.16 Determination of Efficiency 9.16.1 No-load Test 9.16.2 Blocked-rotor Test 9.17 Applications of Induction Motors 9.18 Solved Numerical Problems 9.19 Review Questions Chapter 10: Digital Electronics 10.1 Introduction 10.2 Number Systems 10.2.1 Decimal Number System 10.2.2 Binary Number System 10.2.3 Conversion of Binary to Decimal 10.2.4 Conversion of Decimal to Binary 10.2.5 Binary Addition 10.2.6 Binary Subtraction 10.2.7 Binary Multiplication 10.3 Octal Number System 10.4 Hexadecimal Number System 10.4.1 Application of Binary Numbers in Computers 10.4.2 Sign–Magnitude Representation of Numbers 10.4.3 Complement Notation of Negative Numbers 10.4.4 Advantages of the Complement Number System 10.4.5 Addition and Subtraction in the Binary Number System Using Complementary Arithmetic 10.4.6 Evaluating 2’s and 1’s Complement of a Given Binary Number 10.4.7 Binary Arithmetic Using Complement Rules 10.4.8 Octal and Hexadecimal Complement Numbers 10.5 Logic Gates 10.5.1 NOT Gate 10.5.2 OR Gate 10.5.3 AND Gate 10.5.4 NAND Gate 10.5.5 NOR Gate 10.6 Boolean Algebra 10.6.1 Boolean Expressions 10.7 De Morgan’s Theorem 10.8 Combinational Circuits 10.9 Simplification of Boolean Expressions Using De Morgan’s Theorem 10.10 Universal Gates 10.10.1 Use of NAND Gate to Form the Three Basic Gates 10.10.2 Use of NOR Gate to Form the Three Basic Gates 10.11 The Half-Adder Circuit 10.12 The Full-Adder Circuit 10.13 Flip-Flops 10.12.1 RS Flip-flop 10.12.2 Gated or Clocked RS Flip-flop 10.12.3 JK Flip-flop 10.12.4 D Flip-flops 10.12.5 T Flip-flops (Toggle Flip-flop) 10.12.6 Master–Slave JK Flip-flop 10.12.7 Counters and Shift Registers 10.12.8 Arithmetic Circuits 10.12.9 Memory Function or Data Storage 10.12.10 Digital Systems 10.13 Review Questions Chapter 11: Electronic Components and Circuits 11.1 Introduction 11.2 Review of Atomic Theory 11.3 Binding Forces Between Atoms in Semiconductor Materials 11.4 Extrinsic Semiconductors 11.4.1 N-Type Semiconductor Material 11.4.2 P-Type Semiconductor Material 11.4.3 The p–n Junction 11.4.4 Biasing of p–n Junction 11.5 Semiconductor Diodes 11.5.1 Volt–Ampere Characteristic of a Diode 11.5.2 An Ideal Diode 11.5.3 Diode Parameters and Diode Ratings 11.6 Zener Diode 11.6.1 Zener Diode as Voltage Regulator 11.6.2 Zener Diode as a Reference Voltage 11.7 Bipolar Junction Transistors 11.7.1 Working of an n–p–n Transistor 11.7.2 Working of a p–n–p Transistor 11.7.3 Transistor Configurations 11.7.4 Transistor as an Amplifier 11.7.5 Transistor as a Switch 11.8 Optoelectronic Devices 11.8.1 Light-dependent Resistor 11.8.2 Light-emitting Diodes 11.8.3 Seven Segment Displays 11.8.4 Liquid Crystal Displays 11.8.5 Photodiodes 11.8.6 Photovoltaic Cells or Solar Cells 11.8.7 Phototransistors 11.8.8 Photo-darlington 11.8.9 Optocouplers 11.9 DC Biasing of Bipolar Junction Transistors 11.9.1 Fixed Bias Circuit 11.9.2 Emitter-stabilized Bias Circuit 11.10 Review Questions Solved Question Papers Model Paper I Model Paper II Model Paper III Index