ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Basic Electrical and Electronics Engineering : For RGPV Subject Code BE-104

دانلود کتاب مهندسی پایه برق و الکترونیک: برای RGPV کد موضوع BE-104

Basic Electrical and Electronics Engineering : For RGPV Subject Code BE-104

مشخصات کتاب

Basic Electrical and Electronics Engineering : For RGPV Subject Code BE-104

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9788131767061, 9789332509429 
ناشر: Pearson Education 
سال نشر: 2011 
تعداد صفحات: [512] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 19 Mb 

قیمت کتاب (تومان) : 53,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Basic Electrical and Electronics Engineering : For RGPV Subject Code BE-104 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی پایه برق و الکترونیک: برای RGPV کد موضوع BE-104 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Brief Contents
Contents
Preface
About the Author
Roadmap to the Syllabus
Chapter 1: Basic Concepts, Laws, and Principles
	1.1 Introduction
	1.2 Atomic Structure and Electric Charge
	1.3 Conductors, Insulators, and Semiconductors
	1.4 Electric Field and Magnetic Field
	1.5 Electric Current, Resistance, Potential, and Potential Difference
		1.5.1 Electric Current
		1.5.2 Resistance
		1.5.3 Potential and Potential Difference
	1.6 Ohm’s Law
	1.7 The Effect of Temperature on Resistance
	1.8 Work, Power, and Energy
		1.8.1 Work
		1.8.2 Power
		1.8.3 Energy
		1.8.4 Units of Work, Power, and Energy
	1.9 Electromagnetism and Electromagnetic Induction
		1.9.1 Introduction
		1.9.2 Magnetic Field Around a Current-carrying Conductor
		1.9.3 Magnetic Field Around a Coil
		1.9.4 A Current-carrying Conductor Placed in a Magnetic Field
		1.9.5 A Current-carrying Coil Placed in a Magnetic Field
	1.10 Laws of Electromagnetic Induction
	1.11 Induced EMF in a Coil Rotating in a Magnetic Field
	1.12 EMF Induced in a Conductor
	1.13 Dynamically Induced EMF and Statically Induced EMF
	1.14 Self-induced EMF and Mutually Induced EMF
	1.15 Self-Inductance of a Coil
	1.16 Mutual Inductance
	1.17 Inductance of Coils Connected in Series having a Common Core
	1.18 Energy Stored in a Magnetic Field
	1.19 Electrical Circuit Elements
		1.19.1 Resistors
		1.19.2 Inductors
		1.19.3 Capacitors
	1.20 Energy Stored in a Capacitor
	1.21 Capacitor in Parallel and in Series
	1.22 Review Questions
Chapter 2: DC Networks and Network Theorems
	2.1 Introduction
	2.2 DC Network Terminologies, Voltage, and Current Sources
		2.2.1 Network Terminologies
		2.2.2 Voltage and Current Sources
		2.2.3 Source Transformation
	2.3 Series–Parallel Circuits
		2.3.1 Series Circuits
		2.3.2 Parallel Circuits
		2.3.3 Series–Parallel Circuits
	2.4 Voltage and Current Divider Rules
		2.4.1 Voltage Divider Rule
		2.4.2 Current Divider Rule
	2.5 Kirchhoff’s Laws
		2.5.1 Kirchhoff’s Current Law
		2.5.2 Kirchhoff’s Voltage Law
		2.5.3 Solution of Simultaneous Equations Using Cramer’s Rule
		2.5.4 Method of Evaluating Determinant
	2.6 Maxwell’s Mesh Current Method
	2.7 Nodal Voltage Method (Nodal Analysis)
	2.8 Network Theorems
		2.8.1 Superposition Theorem
		2.8.2 Thevenin’s Theorem
		2.8.3 Norton’s Theorem
	2.9 Star–Delta Transformation
		2.9.1 Transforming Relations for Delta to Star
		2.9.2 Transforming Relations for Star to Delta
	2.10 Review Questions
Chapter 3: AC Fundamentals and Single-phase Circuits
	3.1 Introduction
		3.1.1 Introduction
		3.1.2 Generation of Alternating Voltage in an Elementary Generator
		3.1.3 Concept of Frequency, Cycle, Time Period, Instantaneous Value, Average Value, and Maximum Value
		3.1.4 Sinusoidal and Non-sinusoidal Wave Forms
		3.1.5 Concept of Average Value and Root Mean Square (RMS) Value of an Alternating Quantity
		3.1.6 Analytical Method of Calculation of RMS Value, Average Value, and Form Factor
		3.1.7 RMS and Average Values of Half-wave-rectified Alternating Quantity
		3.1.8 Concept of Phase and Phase Difference
	3.2 Single-Phase AC Circuits
		3.2.1 Behaviour of R, L, and C in AC Circuits
		3.2.2 L–R Series Circuit
		3.2.3 Apparent Power, Real Power, and Reactive Power
		3.2.4 Power in an AC Circuit
		3.2.5 R—C Series Circuit
		3.2.6 R–L–C Series Circuit
	3.3 Review Questions
Chapter 4: Three-phase System
	4.1 Introduction
	4.2 Advantages of Three-Phase Systems
	4.3 Generation of Three-Phase Voltages
	4.4 Terms Used in Three-Phase Systems and Circuits
	4.5 Three-Phase Winding Connections
		4.5.1 Star Connection
		4.5.2 Delta Connection
		4.5.3 Relationship of Line and Phase Voltages, and Currents in a Star-connected System
		4.5.4 Relationship of Line and Phase Voltages and Currents in a Delta-connected System
	4.6 Active and Reactive Power
	4.7 Comparison Between Star Connection and Delta Connection
	4.8 Review Questions
Chapter 5: Electromagnetism and Magnetic Circuits
	5.1 Introduction
		5.1.1 Field Around a Current-carrying Conductor
		5.1.2 Magnetic Flux Density
		5.1.3 Magnetic Field Strength
		5.1.4 Permeability
		5.1.5 Relative Permeability
	5.2 Magnetic Field Due to Current-Carrying Conductor Laws of Electromagnetism
		5.2.1 Ampere’s Circuital Law
		5.2.2 Biot–Savart Law
		5.2.3 Application of Biot–Savart Law
	5.3 Magnetization Curve of a Magnetic Material
	5.4 Hysteresis Loss and Eddy Current Loss in Magnetic Materials
		5.4.1 Hysteresis Loss
		5.4.2 Eddy Current Loss
	5.5 Magnetic Circuits
	5.6 Comparison Between Magnetic and Electric Circuits
	5.7 Magnetic Leakage and Fringing
	5.8 Series and Parallel Magnetic Circuits
	5.9 Attractive Force or the Lifting Power of Electromagnets
	5.10 Review Questions
Chapter 6: Transformers
	6.1 Introduction
	6.2 Applications of Transformers
	6.3 Basic Principle and Constructional Details
		6.3.1 Basic Principle
		6.3.2 Constructional Details
	6.4 Core-Type and Shell-Type Transformers
		6.4.1 Power Transformers and Distribution Transformers
	6.5 EMF Equation
	6.6 Transformer on No-Load
	6.7 Transformer on Load
	6.8 Transformer Circuit Parameters and Equivalent Circuit
	6.9 Phasor Diagram of a Transformer
	6.10 Concept of Voltage Regulation
	6.11 Concept of an Ideal Transformer
	6.12 Transformer Tests
		6.12.1 Open-circuit Test or No-load Test
		6.12.2 Short-circuit Test
	6.13 Efficiency of a Transformer
	6.14 Condition for Maximum Efficiency
	6.15 All-Day Efficiency
	6.16 Calculation of Regulation of a Transformer
	6.17 Factors Affecting Losses in a Transformer
	6.18 Solved Numerical Problems
	6.19 Review Questions
Chapter 7: DC Machines
	7.1 Introduction
		7.1.1 Nature of Load Current When Output is Taken Out Through Brush and Slip-ring Arrangement
		7.1.2 Nature of Load Current When Output is Taken Through Brush and Commutator Arrangement
		7.1.3 Function of Brush and Commutators in Motoring Action
	7.2 Constructional Details
		7.2.1 The Field System
		7.2.2 The Armature
		7.2.3 Armature Winding
		7.2.4 Types of Armature Winding
	7.3 EMF Equation of a DC Machine
		7.3.1 Induced EMF is Equated to Flux Cut Per Second
	7.4 Types of DC Machines
	7.5 Characteristics of DC Generators
		7.5.1 No-load Characteristics
		7.5.2 Load Characteristics
	7.6 Applications of DC Generators
	7.7 Operation of a Dc Machine as a Motor
		7.7.1 Working Principle of a DC Motor
		7.7.2 Changing the Direction of Rotation
		7.7.3 Energy Conversion Equation
	7.8 Torque Equation
	7.9 Starting a DC Motor
	7.10 Speed Control of DC Motors
		7.10.1 Voltage Control Method
		7.10.2 Field Control Method
		7.10.3 Armature Control Method
	7.11 Starter for a DC Motor
		7.11.1 Three-point Starter
		7.11.2 Four-point Starter
	7.12 Types and Characteristics of DC Motors
		7.12.1 Characteristics of DC Shunt Motors
		7.12.2 Characteristics of DC Series Motors
		7.12.3 Characteristics of DC Compound Motors
	7.13 Losses And Efficiency
		7.13.1 Losses in a DC Machine
		7.13.2 Efficiency of DC Machine
		7.13.3 Condition for Maximum Efficiency
	7.14 Applications of DC Machines
		7.14.1 DC Generators
		7.14.2 DC Motors
		7.14.3 DC Series Motors
		7.14.4 DC Compound Motors
	7.15 Solved Numerical Problems
	7.16 Review Questions
Chapter 8: Induction and Synchronous Machines
	8.1 Introduction
	8.2 Constructional Details
	8.3 Double Revolving Field Theory and Principle of Working of Single-Phase Induction Motors
	8.4 Torque–Speed Characteristic
	8.5 Split-Phase Induction Motors
	8.6 Shaded Pole Induction Motor
	8.7 Single-Phase AC Series Motors
	8.8 Operation of a Series Motor on DC and AC (Universal Motors)
	8.9 Single-Phase Synchronous Motors
		8.9.1 Reluctance Motors
		8.9.2 Hysteresis Motors
	8.10 Stepper Motors
	8.11 Review Questions
Chapter 9: Three-phase Induction Motors
	9.1 Introduction
	9.2 Constructional Details
	9.3 Windings and Pole Formation
	9.4 Production of Rotating Magnetic Field
	9.5 Principle of Working
	9.6 Rotor-Induced EMF, Rotor Frequency, Rotor Current
	9.7 Losses in Induction Motors
	9.8 Power Flow Diagram
	9.9 Torque Equation
	9.10 Starting Torque
	9.11 Condition for Maximum Torque
	9.12 Torque–Slip Characteristic
	9.13 Variation of Torque–Slip Characteristic With Change in Rotor–Circuit Resistance
	9.14 Starting of Induction Motors
		9.14.1 Direct-On-Line Starting
		9.14.2 Manual Star–Delta Starter
	9.15 Speed Control of Induction Motors
	9.16 Determination of Efficiency
		9.16.1 No-load Test
		9.16.2 Blocked-rotor Test
	9.17 Applications of Induction Motors
	9.18 Solved Numerical Problems
	9.19 Review Questions
Chapter 10: Digital Electronics
	10.1 Introduction
	10.2 Number Systems
		10.2.1 Decimal Number System
		10.2.2 Binary Number System
		10.2.3 Conversion of Binary to Decimal
		10.2.4 Conversion of Decimal to Binary
		10.2.5 Binary Addition
		10.2.6 Binary Subtraction
		10.2.7 Binary Multiplication
	10.3 Octal Number System
	10.4 Hexadecimal Number System
		10.4.1 Application of Binary Numbers in Computers
		10.4.2 Sign–Magnitude Representation of Numbers
		10.4.3 Complement Notation of Negative Numbers
		10.4.4 Advantages of the Complement Number System
		10.4.5 Addition and Subtraction in the Binary Number System Using Complementary Arithmetic
		10.4.6 Evaluating 2’s and 1’s Complement of a Given Binary Number
		10.4.7 Binary Arithmetic Using Complement Rules
		10.4.8 Octal and Hexadecimal Complement Numbers
	10.5 Logic Gates
		10.5.1 NOT Gate
		10.5.2 OR Gate
		10.5.3 AND Gate
		10.5.4 NAND Gate
		10.5.5 NOR Gate
	10.6 Boolean Algebra
		10.6.1 Boolean Expressions
	10.7 De Morgan’s Theorem
	10.8 Combinational Circuits
	10.9 Simplification of Boolean Expressions Using De Morgan’s Theorem
	10.10 Universal Gates
		10.10.1 Use of NAND Gate to Form the Three Basic Gates
		10.10.2 Use of NOR Gate to Form the Three Basic Gates
	10.11 The Half-Adder Circuit
	10.12 The Full-Adder Circuit
	10.13 Flip-Flops
		10.12.1 RS Flip-flop
		10.12.2 Gated or Clocked RS Flip-flop
		10.12.3 JK Flip-flop
		10.12.4 D Flip-flops
		10.12.5 T Flip-flops (Toggle Flip-flop)
		10.12.6 Master–Slave JK Flip-flop
		10.12.7 Counters and Shift Registers
		10.12.8 Arithmetic Circuits
		10.12.9 Memory Function or Data Storage
		10.12.10 Digital Systems
	10.13 Review Questions
Chapter 11: Electronic Components and Circuits
	11.1 Introduction
	11.2 Review of Atomic Theory
	11.3 Binding Forces Between Atoms in Semiconductor Materials
	11.4 Extrinsic Semiconductors
		11.4.1 N-Type Semiconductor Material
		11.4.2 P-Type Semiconductor Material
		11.4.3 The p–n Junction
		11.4.4 Biasing of p–n Junction
	11.5 Semiconductor Diodes
		11.5.1 Volt–Ampere Characteristic of a Diode
		11.5.2 An Ideal Diode
		11.5.3 Diode Parameters and Diode Ratings
	11.6 Zener Diode
		11.6.1 Zener Diode as Voltage Regulator
		11.6.2 Zener Diode as a Reference Voltage
	11.7 Bipolar Junction Transistors
		11.7.1 Working of an n–p–n Transistor
		11.7.2 Working of a p–n–p Transistor
		11.7.3 Transistor Configurations
		11.7.4 Transistor as an Amplifier
		11.7.5 Transistor as a Switch
	11.8 Optoelectronic Devices
		11.8.1 Light-dependent Resistor
		11.8.2 Light-emitting Diodes
		11.8.3 Seven Segment Displays
		11.8.4 Liquid Crystal Displays
		11.8.5 Photodiodes
		11.8.6 Photovoltaic Cells or Solar Cells
		11.8.7 Phototransistors
		11.8.8 Photo-darlington
		11.8.9 Optocouplers
	11.9 DC Biasing of Bipolar Junction Transistors
		11.9.1 Fixed Bias Circuit
		11.9.2 Emitter-stabilized Bias Circuit
	11.10 Review Questions
Solved Question Papers
	Model Paper I
	Model Paper II
	Model Paper III
Index




نظرات کاربران