دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: S. K. Bhattacharya
سری:
ISBN (شابک) : 9788131754566, 9789332501126
ناشر: Pearson Education
سال نشر: 2011
تعداد صفحات: [735]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Basic Electrical and Electronics Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی پایه برق و الکترونیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents Preface About the Author Chapter 1: Basic Concepts, Laws, and Principles 1.1 Introduction 1.2 Atomic Structure and Electric Charge 1.3 Conductors, Insulators, and Semiconductors 1.4 Electric Field and Magnetic Field 1.5 Electric Current, Resistance, Potential, and Potential Difference 1.5.1 Electric Current 1.5.2 Resistance 1.5.3 Potential and Potential Difference 1.6 Ohm’s Law 1.7 The Effect of Temperature on Resistance 1.8 Work, Power, and Energy 1.8.1 Work 1.8.2 Power 1.8.3 E nergy 1.8.4 Units of Work, Power, and Energy 1.9 Electromagnetism and Electromagnetic Induction 1.9.1 Introduction 1.9.2 Magnetic Field Around a Current-carrying Conductor 1.9.3 Magnetic Field Around a Coil 1.9.4 A Current-carrying Conductor Placed in a Magnetic Field 1.9.5 A Current-carrying Coil Placed in a Magnetic Field 1.10 Laws of Electromagnetic Induction 1.11 Induced EMF in a Coil Rotating in a Magnetic Field 1.12 EMF Induced in a Conductor 1.13 Dynamically Induced EMF and Statically Induced EMF 1.14 Self-induced EMF and Mutually induced EMF 1.15 Self-Inductance of a Coil 1.16 Mutual Inductance 1.17 Inductance of Coils Connected in Series Having a Common Core 1.18 Energy Stored in a Magnetic Field 1.19 Electrical Circuit Elements 1.19.1 Resistors 1.19.2 Inductors 1.19.3 Capacitors 1.20 Energy Stored in a Capacitor 1.21 Capacitor in Parallel and in Series 1.22 Review Questions Chapter 2: DC Networks and Network Theorems 2.1 Introduction 2.2 DC Network Terminologies, Voltage, and Current Sources 2.2.1 Network Terminologies 2.2.2 V oltage and Current Sources 2.2.3 Source Transformation 2.3 Series–Parallel Circuits 2.3.1 Series Circuits 2.3.2 Parallel Circuits 2.3.3 Series–Parallel Circuits 2.4 Voltage and Current Divider Rules 2.4.1 Voltage Divider Rule 2.4.2 Current Divider Rule 2.5 kirchhoff’s laws 2.5.1 kirchhoff’s Current law 2.5.2 kirchhoff’s voltage law 2.5.3 Solution of Simultaneous Equations Using Cramer’s Rule 2.5.4 M ethod of Evaluating Determinant 2.6 Maxwell’s Mesh Current Method Nodal Voltage Method (Nodal Analysis) 2.8 Network Theorems 2.8.1 Superposition Theorem 2.8.2 Thevenin’s Theorem 2.8.3 Norton’s Theorem 2.8.4 Millman’s Theorem 2.8.5 Maximum Power Transfer Theorem 2.9 Star–Delta Transformation 2.9.1 Transforming Relations for Delta to Star 2.9.2 T ransforming Relations for Star to Delta 2.10 DC Transients 2.10.1 Introduction 2.10.2 Transient in R–L Circuit 2.10.3 Transient in R–C Circuit 2.10.3 Transient in R–C Circuit 2.11 Review Questions Chapter 3: AC Fundamentals and Single-phase Circuits 3.1 AC Fundamentals 3.1.1 Introduction 3.1.2 Generation of Alternating Voltage in an Elementary Generator 3.1.3 Concept of Frequency, Cycle, Time Period, Instantaneous Value, Average Value, and Maximum Value 3.1.4 Sinusoidal and Non-sinusoidal Wave Forms 3.1.5 Concept of Average Value and Root Mean Square (RMS)Value of an Alternating Quantity 3.1.6 Analytical Method of Calculation of RMS Value, Average Value, and Form Factor 3.1.7 RMS and Average Values of Half-wave-rectified Alternating Quantity 3.1.8 Concept of Phase and Phase Difference 3.2 Single-phase AC Circuits 3.2.1 Behaviour of R, L, and C in AC Circuits 3.2.2 L–R Series Circuit 3.2.3 Apparent Power, Real Power, and Reactive Power 3.2.4 Power in an AC Circuit 3.2.5 R—C Series Circuit 3.2.6 R–L–C Series Circuit 3.2.7 AC Parallel Circuits 3.2.8 AC Series—Parallel Circuits 3.3 Resonance in AC Circuits 3.3.1 Resonance in AC Series Circuit 3.3.2 Resonance in AC Parallel Circuits 3.4 Review Questions Chapter 4: Three-phase System 4.1 Introduction 4.2 Advantages of Three-phase Systems 4.3 Generation of Three-Phase Voltages 4.4 Terms Used in Three-phase Systems and Circuits 4.5 Three-phase Winding Connections 4.5.1 Star Connection 4.5.2 Delta Connection 4.5.3 Relationship of Line and Phase Voltages, and Currents in a Star-connected System 4.5.4 Relationship of Line and Phase Voltages and Currents in a Delta-connected System 4.6 Active and Reactive Power 4.7 Comparison between Star Connection and Delta Connection 4.8 Measurement of Power in Three-phase Circuits 4.8.1 One-Wattmeter Method 4.8.2 Two-Wattmeter Method 4.8.3 Three-Wattmeter Method 4.9 Review Questions Chapter 5: Electromagnetism and Magnetic Circuits 5.1 Magnets and Magnetic Fields 5.1.1 Field Around a Current-carrying Conductor 5.1.2 Magnetic Flux Density 5.1.3 Magnetic Field Strength 5.1.4 Permeability 5.1.5 Relative Permeability 5.2 Magnetic Field Due to Current-carrying Conductor Laws of Electromagnetism 5.2.1 Ampere’s Circuital Law 5.2.2 Biot-Savart Law 5.2.3 Application of Biot-Savart Law 5.3 Magnetization Curve of a Magnetic Material 5.4 Hysteresis Loss and Eddy Current Loss in Magnetic Materials 5.4.1 Hysteresis Loss 5.4.2 Eddy Current Loss 5.5 Magnetic Circuits 5.6 Comparison Between Magnetic and Electric Circuits 5.7 Magnetic Leakage and Fringing 5.8 Series and Parallel Magnetic Circuits 5.9 Attractive Force or the Lifting Power of Electromagnets 5.10 Review Questions Chapter 6: Transformers 6.1 Introduction 6.2 Applications of Transformers 6.3 Basic Principle and Constructional Details 6.3.1 Basic Principle 6.3.2 Constructional Details 6.4 Core-Type and Shell-Type Transformers 6.4.1 Power Transformers and Distribution Transformers 6.5 EMF Equation 6.6 Transformer on No-Load 6.7 Transformer on Load 6.8 Transformer Circuit Parameters and Equivalent Circuit 6.9 Phasor Diagram of a Transformer 6.10 Concept of Voltage Regulation 6.11 Concept of an Ideal Transformer 6.12 Transformer Tests 6.12.1 Open-circuit Test or No-load Test 6.12.2 Short-circuit Test 6.13 Efficiency of a Transformer 6.14 Condition for Maximum Efficiency 6.15 All-day Efficiency 6.16 Calculation of Regulation of a Transformer 6.17 Factors Affecting Losses in a Transformer 6.18 Solved Numerical Problems 6.19 Review Questions Chapter 7: DC Machines 7.1 Introduction and Principle of Working 7.1.1 Nature of Load Current When Output is Taken Out Through Brush and Slip-ring Arrangement 7.1.2 Nature of Load Current When Output Is Taken Through Brush and Commutator Arrangement 7.1.3 Function of Brush and Commutators in Motoring Action 7.2 Constructional Details 7.2.1 The Field System 7.2.2 The Armature 7.2.3 Armature Winding 7.2.4 Types of Armature Winding 7.3 EMF Equation of a DC Machine 7.3.1 Induced EMF is Equated to Flux Cut Per Second 7.4 Types of DC Machines 7.5 Characteristics of DC Generators 7.5.1 No-load Characteristics 7.5.2 Load Characteristics 7.6 Applications of DC Generators 7.7 Operation of a DC Machine As a Motor 7.7.1 Working Principle of a DC Motor 7.7.2 Changing the Direction of Rotation 7.7.3 Energy Conversion Equation 7.8 Torque Equation 7.9 Starting a DC Motor 7.10 Speed Control of DC Motors 7.10.1 Voltage Control Method 7.10.2 Field Control Method 7.10.3 Armature Control Method 7.11 Starter for a DC Motor 7.11.1 Three-point Starter 7.11.2 Four-point Starter 7.12 Types and Characteristics of DC Motors 7.12.1 Characteristics of DC Shunt Motors 7.12.2 Characteristics of DC Series Motors 7.12.3 Characteristics of DC Compound Motors 7.13 Losses and Efficiency 7.13.1 Losses in a DC Machine 7.13.2 Efficiency of DC Machine 7.13.3 Condition for Maximum Efficiency 7.14 Applications of DC Machines 7.14.1 DC Generators 7.14.2 DC Motors 7.14.3 DC Series Motors 7.14.4 DC Compound Motors 7.15 Solved Numerical Problems 7.16 Review Questions Chapter 8: Three-phase Induction Motors 8.1 Introduction 8.2 Constructional Details 8.3 Windings and Pole Formation 8.4 Production of Rotating Magnetic Field 8.5 Principle of Working 8.6 Rotor-Induced EMF, Rotor Frequency, Rotor Current 8.7 Losses in Induction Motors 8.8 Power Flow Diagram 8.9 Torque Equation 8.10 Starting Torque 8.11 Condition for Maximum Torque 8.12 Torque–Slip Characteristic 8.13 Variation of Torque–slip Characteristic With Change in Rotor–Circuit Resistance 8.14 Starting of Induction Motors 8.14.1 Direct-on-Line Starting 8.14.2 Manual Star–Delta Starter 8.15 Speed Control of Induction Motors 8.16 Determination of Efficiency 8.16.1 No-load Test 8.16.2 Blocked-rotor Test 8.17 Applications of Induction Motors 8.18 Solved Numerical Problems 8.19 Review questions Chapter 9: Single-phase Motors 9.1 Introduction to Single-phase Induction Motors 9.2 Constructional Details 9.3 Double Revolving Field Theory and Principle of Working of Single-phase Induction Motors 9.4 Torque-Speed Characteristic 9.5 Split-Phase Induction Motors 9.6 Shaded Pole Induction Motor 9.7 Single-Phase AC Series Motors 9.8 Operation of a Series Motor on DC and AC (Universal Motors) 9.9 Single-Phase Synchronous Motors 9.9.1 Reluctance Motors 9.9.2 Hysteresis Motors 9.10 Stepper Motors 9.11 Review Questions Chapter 10: Synchronous Machines 10.1 Introduction 10.2 Constructional Details of Synchronous Machines 10.3 Advantages of Stationary Armature and Rotating Field 10.4 Use of Laminated Sheets for the Stator and the Rotor 10.5 Armature Windings 10.6 Concept of Coil Span, Mechanical, and Electrical Degrees 10.7 Types of Windings 10.8 Induced EMF in a Synchronous Machine 10.8.1 EMF Equation 10.8.2 Distribution Factor 10.8.3 Pitch Factor 10.9 Open-circuit or No-load Characteristic 10.10 Synchronous Generator on Load 10.11 Synchronous Impedance and Voltage Drop Due to Synchronous Impedance 10.12 Voltage Regulation of a Synchronous Generator 10.13 Determination of Voltage Regulation by the Synchronous Impedance Method 10.14 Synchronous Generators Connected in Parallel to Supply a Common Load 10.14.1 Advantages of Parallel Operation 10.14.2 Parallel Connection of Alternators 10.14.3 Conditions for Parallel Connection and Synchronization 10.14.4 Load Sharing 10.15 Synchronous Motor 10.15.1 Introduction 10.15.2 Principle of Working of a Synchronous Motor 10.15.3 Effect of Change of Excitation of a Synchronous Motor 10.15.4 Application of Synchronous Motors 10.16 Review Questions Chapter 11: Measurement and Measuring Instruments 11.1 Introduction 11.2 Analog and Digital Instruments 11.3 Passive and Active Instruments 11.4 Static Characteristics of Instruments 11.4.1 Accuracy 11.4.2 Precision 11.4.3 Sensitivity and Resolution 11.4.4 Error, Threshold, and Loading Effect 11.5 Linear and Non-Linear Systems 11.6 Dynamic Characteristics of Instruments 11.7 Classification of the Instrument System 11.7.1 Active and Passive Instruments 11.7.2 Analog and Digital Instruments 11.7.3 Indicating, Recording, and Integrating Instruments 11.7.4 Deflection- and Null-type Instruments 11.8 Measurement Error 11.9 Indicating-type Instruments 11.9.1 Permanent Magnet Moving Coil Instruments 11.9.2 Use of Shunts and Multipliers 11.9.3 Moving Iron Instruments 11.9.4 Dynamometer-type moving coil Instruments 11.10 Measurement of Power 11.10.1 Power in DC and AC Circuits 11.10.2 Measurement of Power in Single-phase AC Circuit 11.10.3 Sources of Error in Measurement Using Dynamometer-type Wattmeters 11.11 Measurement of Energy 11.11.1 Introduction 11.11.2 Constructional details and working Principle of Single-phase Induction-type Energy Meter 11.12 Instrument Transformers 11.12.1 Current Transformers 11.12.2 Potential Transformers 11.13 Device and Measurement of Insulation Resistance 11.14 Multimeter and Measurement of Resistance 11.15 Review Questions Chapter 12: Transducers 12.1 Introduction 12.2 Classification of Transducers 12.3 Characteristics of a Transducer 12.4 Linear Variable Differential Transformer 12.5 Capacitive Transducers 12.6 Inductive Transducers 12.7 Potentiometric Transducer 12.8 Strain Gauge Transducer 12.9 Thermistors 12.10 Thermocouples 12.11 Hall Effect Transducers 12.12 Piezoelectric Transducer 12.13 Photoelectric Transducer 12.14 Selection of Transducers 12.15 Review Questions Chapter 13: Power Systems 13.1 Introduction 13.2 Generation of Electricity 13.3 Sources of Energy for Electricity Generation 13.4 Thermal Power Generation from Fossil Fuel 13.4.1 Coal-fired Thermal Power Stations 13.4.2 Gas-fired Thermal Power Stations 13.4.3 Oil- and Diesel-oil-fired Thermal Power Stations 13.5 Hydroelectric Power-generating Stations 13.6 Nuclear Power-Generating Stations 13.7 Non-conventional or Alternative Generating Stations 13.7.1 Solar Electricity Generation 13.7.2 Wind Energy to Produce Electricity 13.7.3 Electricity from Biomass 13.7.4 Mini/Micro Hydel Power Generation 13.7.5 Electricity from Tidal Energy 13.7.6 Electricity from Ocean Energy 13.7.7 Electricity from Geothermal Energy 13.8 Transmission and Distribution of Electricity 13.8.1 AC Versus DC Transmission 13.8.2 Distribution System 13.8.3 Overhead Versus Underground Distribution Systems 13.8.4 Connection Schemes of Distribution System 13.9 Domestic Wiring 13.9.1 Service Connection 13.9.2 Service Mains 13.9.3 Distribution Board for Single-phase Installation 13.9.4 Neutral and Earth Wire 13.9.5 Earthing 13.9.6 System of Wiring 13.9.7 System of Connection of Lights, Fans and Other Electrical Loads 13.10 Circuit Protective Devices and Safety Precautions 13.10.1 Safety Precautions in Using Electricity 13.11 Efficient Use of Electricity 13.12 Review Questions Chapter 14: Semiconductor Devices 14.1 Introduction 14.2 Review of Atomic Theory 14.3 Binding Forces Between Atomsin Semiconductor Materials 14.4 Extrinsic Semiconductors 14.4.1 N-Type Semiconductor Material 14.4.2 P-Type Semiconductor Material 14.4.3 T he p–n Junction 14.4.4 Biasing of p–n Junction 14.5 Semiconductor Diodes 14.5.1 Volt–ampere Characteristic of a Diode 14.5.2 An Ideal Diode 14.5.3 Diode Parameters and Diode Ratings 14.6 Zener Diode 14.6.1 Zener Diode As Voltage Regulator 14.6.2 Zener Diode As a Reference Voltage 14.7 Bipolar Junction Transistors 14.7.1 Working of a n–p–n Transistor 14.7.2 Working of a p–n–p Transistor 14.7.3 Transistor Configurations 14.7.4 Transistor As an Amplifier 14.7.5 Transistor As a Switch 14.8 Field Effect Transistors 14.8.1 Junction Field Effect Transistors 14.8.2 FET Applications 14.9 MOSFET 14.9.1 The Enhancement MOSFET (EMOSFET) 14.9.2 The Depletion MOSFET 14.9.3 Static Characteristics of MOSFET 14.9.4 Applications of MOSFET 14.10 Silicon-controlled Rectifier 14.10.1 Characteristics of SCR 14.10.2 Two-transistor Analogy of an SCR 14.10.3 Applications of SCR 14.11 DIAC 14.12 TRIAC 14.13 Optoelectronic Devices 14.13.1 Light-dependent Resistor 14.13.2 Light-emitting Diodes 14.13.3 Seven Segment Displays 14.13.4 Liquid Crystal Displays 14.13.5 Photodiodes 14.13.6 Photovoltaic Cells or Solar Cells 14.13.7 Phototransistors 14.13.8 Photo-darlington 14.13.9 Optocouplers 14.14 Review Questions Chapter 15: Rectifiers and Other Diode Circuits 15.1 Rectifiers 15.1.1 introduction 15.1.2 Half-wave Rectifier 15.1.3 Analysis of Half-wave Rectifier 15.1.4 Full-wave Rectifier 15.1.5 Full-wave Bridge Rectifier 15.1.6 Analysis of Full-wave Rectifiers 15.1.7 Comparison of Half-wave and Full-wave Rectifiers 15.2 Filters 15.3 Applications of Diodes in Clipping and Clamping Circuits 15.3.1 Negative and Positive Series Clippers 15.3.2 Shunt Clippers 15.3.3 Biased Clippers 15.3.4 Clamping Circuits 15.4 Review Questions Chapter 16: Digital Electronics 16.1 Introduction 16.2 Number Systems 16.2.1 Decimal Number System 16.2.2 Binary Number System 16.2.3 Conversion of Binary to Decimal 16.2.4 Conversion of Decimal to Binary 16.2.5 Binary Addition 16.2.6 Binary Subtraction 16.2.7 Binary Multiplication 16.3 Octal Number System 16.4 Hexadecimal Number System 16.4.1 Application of Binary Numbers in Computers 16.5 Logic Gates 16.5.1 NOT Gate 16.5.2 OR Gate 16.5.3 AND Gate 16.5.4 NAND Gate 16.5.5 NOR Gate 16.6 Boolean Algebra 16.6.1 Boolean Expressions 16.7 De Morgan’s Theorem 16.8 Combinational Circuits 16.9 Simplification of Boolean Expressions Using De Morgan’s Theorem 16.10 Universal Gates 16.10.1 Use of NAND Gate to Form the Three Basic Gates 16.10.2 Use of NOR Gate to Form the Three Basic Gates 16.11 Flip-Flops 16.11.1 RS Flip-flop 16.11.2 Gated or Clocked RS Flip-flop 16.11.3 JK Flip-flop 16.11.4 D Flip-flops 16.11.5 T Flip-flops (Toggle Flip-flop) 16.11.6 Master–Slave JK Flip-flop 16.11.7 Counters and Shift Registers 16.11.8 Arithmetic Circuits 16.11.9 Memory Function or Data Storage 16.11.10 Digital Systems 16.12 Review Questions Chapter 17: Integrated Circuits 17.1 Introduction 17.2 Fabrication of Monolithic ICS 17.3 Hybrid Integrated Circuits 17.4 Linear and Digital ICS 17.5 Operational Amplifiers 17.6 Op-amp Applications 17.6.1 Op-amp As a Summing Amplifier 17.6.2 Op-amp As a Differential Amplifier (Subtractor) 17.6.3 Op-amp As a Derivative Amplifier 17.6.4 Op-amp As an Integrator 17.6.5 Other Applications of Op-amps 17.7 The 555 Timer Integrated Circuit 17.7.1 Three Operating Modes of IC 555 17.7.2 Pin Configuration of IC 555 17.7.3 Functional Block Diagram of IC 555 17.7.4 Monostable Application of IC 555 17.7.5 Astable Application of IC 555 17.7.6 An IC 555 Timer Astable Oscillator Circuit 17.8 IC Voltage Regulators or Regulator ICS 17.9 Digital Integrated Circuits 17.10 Review Questions Index