دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Pranab Dey
سری:
ISBN (شابک) : 981196615X, 9789811966156
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 349
[350]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 26 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Basic and Advanced Laboratory Techniques in Histopathology and Cytology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنیک های آزمایشگاهی پایه و پیشرفته در هیستوپاتولوژی و سیتولوژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش دوم این کتاب با استقبال خوب، اطلاعات دقیقی در مورد تکنیک های اولیه و پیشرفته آزمایشگاهی در هیستوپاتولوژی و سیتولوژی ارائه می دهد. راهنمایی روشنی در مورد اصول و تکنیک های معمول و تکنیک های آزمایشگاهی خاص ارائه می دهد. همچنین تکنیکهای آزمایشگاهی پیشرفته مانند ایمونوسیتوشیمی، فلوسیتومتری، سیتولوژی مبتنی بر مایع، واکنشهای زنجیرهای پلیمراز، ریزآرایههای بافتی، فناوری مولکولی و غیره را پوشش میدهد. ویرایش دوم کتاب چندین موضوع مهم اخیر را با بسیاری از فصلهای جدید، مانند مایع، پوشش میدهد. بیوپسی، شبکه عصبی مصنوعی، آسیب شناسی دیجیتال و توالی یابی نسل بعدی. هر فصل اصول اساسی، روشهای عملی، عیبیابی و کاربردهای بالینی این تکنیک را توضیح میدهد. این شامل چندین نقاشی خط رنگی، میکروعکس ها و جداول برای نشان دادن هر تکنیک است. این کتاب راهنمای مفیدی برای دانشجویان و دانشجویان کارشناسی ارشد پاتولوژی، متخصصین پاتولوژی، و همچنین تکنسین های آزمایشگاهی و دانشجویان پژوهشی است.
The second edition of this well-received book provides detailed information on the basic and advanced laboratory techniques in histopathology and cytology. It offers clear guidance on the principles and techniques of routine and special laboratory techniques. It also covers advanced laboratory techniques such as immunocytochemistry, flow cytometry, liquid-based cytology, polymerase chain reactions, tissue microarray, molecular technology, etc. The book\'s second edition covers several important recent topics with many new chapters, such as liquid biopsy, artificial neural network, digital pathology, and next-generation sequencing. Each chapter elucidates basic principle, practical methods, troubleshooting, and clinical applications of the technique. It includes multiple colored line drawings, microphotographs, and tables to illustrate each technique. The book is a helpful guide to the post-graduate students and fellows in pathology, practicing pathologists, as well as laboratory technicians, and research students.
Preface to the Second Edition Acknowledgements Contents About the Author Abbreviations Part I: Basic Laboratory Techniques in Histopathology Laboratory 1: Fixation of Histology Samples: Principles, Methods and Types of Fixatives 1.1 Introduction 1.1.1 Aims of Fixation 1.2 Ideal Fixative 1.3 Tissue Changes in Fixation 1.3.1 Types of Fixation 1.3.2 Description of Nature of Fixation 1.4 Essential Precautions for Fixation in General 1.5 Mechanism of Fixation 1.5.1 Dehydration and Coagulation of Protein 1.5.2 Cross-linking Fixatives 1.6 Factors Affecting Fixation 1.7 Commonly Used Fixatives in the Laboratory 1.7.1 Formaldehyde 1.8 Preparation of Different Formalin Solution 1.8.1 Glutaraldehyde 1.9 Osmium Tetroxide 1.9.1 Advantages 1.9.2 Disadvantages 1.9.3 Methyl and Ethyl Alcohol 1.9.4 Acetone 1.9.5 Bouin’s Fixative 1.10 Mercury Salt-containing Fixatives 1.10.1 Zenker’s Fluid 1.10.2 Helly’s Fluid 1.10.3 B5 Fixatives 1.10.4 Fixatives of Choice 1.11 Fixation Artifact 1.11.1 Formalin Pigment 1.11.1.1 Removing the Pigment Picric acid Method Schridde’s Method Verocay”s Method Mercury Pigments Fuzzy Staining Prolonged Fixation Dichromate Deposit 1.11.2 Troubleshooting in Fixation is Highlighted in Table 1.6 References 2: Processing of Tissue in the Histopathology Laboratory 2.1 Factors that Influence Tissue Processing 2.2 Dehydration 2.3 Individual Dehydrating Agent 2.3.1 Alcohol 2.3.2 Dehydrating Agents Other than Alcohol 2.4 Clearing 2.4.1 Individual Clearing Agent 2.4.2 Other Clear Agents 2.5 Infiltration and Embedding 2.5.1 Different Impregnating Medium 2.5.1.1 Paraffin Wax 2.5.1.2 Advantages of Paraffin Wax 2.5.1.3 Disadvantages of Paraffin Wax 2.5.1.4 Additives and Modification of Paraffin Wax 2.5.2 Vacuum Impregnation Method 2.6 Tissue Processing Methods 2.6.1 Advantages 2.7 Overall Precautions of Tissue Processing 2.7.1 Time schedule for overnight processing (Fig. 2.4) 2.7.2 Manual Tissue Processor 2.7.3 Rapid tissue Processing 2.7.3.1 Advantages 2.7.3.2 Limitations References 3: Embedding of Tissue in Histopathology 3.1 Embedding Medium 3.2 Different Types of Mould Used for Block 3.3 Tissue Embedding Method 3.3.1 Double Embedding Method 3.3.1.1 Method 3.3.2 Nitrocellulose and Paraffin [2] 3.3.2.1 Method 3.3.3 Tissue Orientation and Embedding 3.4 Tissue marking [3] References 4: Decalcification of Bony and Hard Tissue for Histopathology Processing 4.1 Introduction 4.2 Factors Controlling the Rate of Decalcification 4.3 The Methods of Decalcification [1] 4.3.1 Acid Decalcification 4.3.2 Von Ebner’s Fluid 4.3.3 Perenyi’s fluid 4.3.4 Weak Acids 4.3.5 Trichloroacetic acid 4.3.6 Chelating Agents 4.3.6.1 EDTA Solution 4.3.6.2 Advantages 4.3.6.3 Disadvantages 4.4 Ion Exchange Resin Method 4.4.1 Advantages 4.4.2 Electrolysis Method 4.4.3 Surface Decalcification 4.5 Endpoint Determination of Decalcification 4.6 Results of Under Decalcification 4.7 Results of Over Decalcification References 5: Tissue Microtomy: Principle and Procedure 5.1 Introduction 5.2 Microtome Knife 5.2.1 Disposable Knife 5.2.1.1 Advantages 5.2.1.2 Disadvantages 5.2.2 Materials Used in Knife 5.2.3 Angles of Knife 5.3 Microtome Knife Sharpening 5.3.1 Manual Method 5.3.2 Factors Involved in Cutting 5.4 Sectioning the Paraffin Block 5.4.1 Steps of Tissue Sectioning (Fig. 5.7) 5.4.2 How to Recover the Dried Tissue? 5.4.2.1 Formol-Glycerol Reference 6: Frozen Section: Principle and Procedure 6.1 Introduction 6.2 Indications of Frozen Sections 6.2.1 The Principle of the Frozen Section 6.2.2 Cryostat Machine Proper (Fig. 6.1) 6.3 Cryostat Sectioning 6.4 Staining 6.4.1 H & E Staining 6.4.2 Toluidine Blue Stain 6.5 Factors Affecting the Good Quality Section References 7: Staining Principle and General Procedure of Staining the Tissue 7.1 Introduction 7.2 Dyes Used for Staining 7.2.1 Types of Dye 7.2.2 Types of Dye on the Basis of Chemical Structures and Chromophore Groups 7.3 Mechanisms and Theory of Staining 7.4 Factors Influencing Staining 7.5 The Nomenclature Used Regarding Dye 7.5.1 Applications 7.6 Metachromasia [4] 7.6.1 Metachromatic Dyes 7.6.2 Applications of Metachromasia 7.7 Progressive and Regressive Staining 7.8 Mordant 7.8.1 Lake 7.8.2 Type of Application of Mordant 7.8.2.1 Example 7.8.3 Accentuators 7.9 Staining Procedure 7.9.1 Preparation of Buffer Solutions 7.9.1.1 Molar Solution 7.9.1.2 Citrate Buffer 7.9.1.3 Phosphate Buffer 7.9.1.4 TRIS-HCl Buffer References 8: Haematoxylin and Eosin Stain of the Tissue Section 8.1 Introduction 8.2 Haematoxylin 8.3 Bluing 8.3.1 Scott’s Tap Water 8.3.2 Preparation of Different Haematoxylins and Their Properties 8.3.2.1 Harris’s Alum Haematoxylin 8.3.2.2 Preparation of the Stain 8.3.2.3 Steps 8.3.2.4 Cautions 8.3.3 Mayer’s Haematoxylin 8.3.3.1 Preparation of the Stain 8.3.3.2 Steps 8.3.4 Ehrlich’s Haematoxylin 8.3.4.1 Preparation of the Stain 8.3.4.2 Steps of Preparation 8.3.5 Cole’s Haematoxylin 8.3.5.1 Preparation of the stain 8.3.5.2 Steps of Preparation 8.4 Counterstain by Eosin 8.5 Routine Haematoxylin and Eosin stain 8.5.1 Requirements 8.5.2 Steps (Fig. 8.2) 8.5.3 Staining Time of Different Haematoxylin 8.5.3.1 Staining time of Haematoxylin Depends on the Various Factors 8.6 Iron Haematoxylin 8.6.1 Heidenhain’s Iron Haematoxylin 8.6.1.1 Application 8.6.1.2 Preparation 8.6.1.3 Staining 8.6.2 Verhoeff’s Iron Haematoxylin 8.6.2.1 Preparation 8.6.3 Tungsten Haematoxylin 8.6.3.1 Preparation 8.6.3.2 Staining 8.6.3.3 Result 8.7 Clearing the Smear 8.8 Mounting 8.8.1 Disadvantage 8.8.2 Application of Mounting Medium 8.8.2.1 Cautions 8.8.3 Coverslip 8.8.4 The Resin-coated Plastic Film 8.8.4.1 Advantages 8.8.5 Restaining References 9: Special Stains for the Carbohydrate, Protein, Lipid, Nucleic Acid and Pigments 9.1 Introduction 9.2 Carbohydrates 9.2.1 Simple Carbohydrates 9.2.1.1 Locations 9.2.2 Significance of Mucin Demonstration 9.3 Staining of Different Carbohydrates 9.3.1 Glycogen 9.3.2 Periodic Acid Schiff’s (PAS) Stain [4] 9.3.3 Indications to do PAS stain 9.3.4 Principle (Fig. 9.3) 9.3.4.1 Components of Solutions 9.3.4.2 Preparation 9.3.4.3 Steps 9.3.4.4 Result 9.3.5 Alcian Blue 9.3.5.1 Indications 9.3.5.2 Solution Alcian Blue Solution Neutral Red Solution Steps to Make Solution 9.3.5.3 Method of Staining 9.3.6 Combined PAS-Alcian Blue Staining 9.3.6.1 Method of staining 9.4 Result 9.4.1 Mucicarmine Stain [5] 9.4.1.1 Indications 9.4.1.2 Solution Southgate Mucicarmine stock solution Preparation Mucicarmine working solution Steps 9.5 Colloidal Iron 9.5.1 Colloidal Ion Stalk Solution 9.5.1.1 Method 9.5.1.2 Result 9.5.2 Lipids 9.6 Fixation 9.7 Stains 9.7.1 Oil red O [6] 9.7.2 Preparation of Oil Red O Stain 9.7.2.1 Stock solution 9.7.2.2 Working solution 9.7.2.3 Steps 9.8 Sudan Black B [7] 9.8.1 Solution 9.8.2 Steps 9.8.3 Ferric haematoxylin for Phospholipid [8] 9.8.3.1 Preparation of solution Solution 1 Solution 2 9.8.3.2 Working solution 9.8.3.3 Steps 9.9 Nucleic Acid and Proteins 9.9.1 Nucleic Acids 9.9.2 Proteins 9.9.3 Feulgen Stain [9] 9.9.4 Methyl Green Pyronin Stain [10] 9.9.5 Pigments 9.9.6 Hemosiderin Pigment 9.9.6.1 Prussian Blue Reaction (Pearl’s Reaction) for Ferric Iron 9.9.7 Bile Pigment 9.9.7.1 Fouchet’s Stain Steps 9.9.8 Argyrophil Pigments 9.9.8.1 Grimelius Staining [12] 9.9.8.2 Principle 9.9.8.3 Acetate Buffer 9.9.9 Melanin 9.9.9.1 Masson Fontana Method 9.9.10 Schmorl’s Stain [13] 9.9.11 Calcium 9.9.12 Von Kossa Technique [14, 15] 9.9.13 Formalin Pigment 9.9.14 Malarial Pigment 9.9.15 Starch References 10: Connective Tissue Stain: Principle and Procedure 10.1 Fibrous Part of Connective Tissue 10.1.1 Reticulin Fibres 10.1.2 Elastic Fibres 10.1.3 Basement Membrane 10.2 Stains 10.2.1 Masson Trichrome [1] 10.2.1.1 Indications and Advantages 10.2.1.2 Solution Bouin’s Fixative Weigert’s Haematoxylin Acid Fuchsin Solution Phosphomolybdic Acid Solution (1%) Aniline Blue Solution Steps to Stain Result (Fig. 10.1b) Warning Note 10.2.2 Van Gieson Stain [2] 10.2.2.1 Indications 10.2.2.2 Van Gieson’s Stain Solution 10.2.2.3 Steps of Staining 10.2.2.4 Result (Fig. 10.2) 10.2.2.5 Warning Notes 10.2.3 Reticulin Stain 10.2.3.1 Indications 10.2.4 Gordon and Sweet’s Method for Reticulin Stain [3] 10.2.4.1 Solution Acidified Potassium Permanganate (1%) Oxalic Acid (2%) Iron Alum (2%) 10% Formaldehyde Gold Chloride (0.2%) Sodium Thiosulphate (5%) Silver Nitrate (10%) 10.2.4.2 Steps to Stain 10.2.4.3 Result (Fig. 10.4) 10.2.4.4 Warning Notes 10.3 Elastic Fibres 10.3.1 Verhoeff’s Stain for Collagen [4] 10.3.1.1 Solutions 10.3.2 Final Verhoeff’s solution 10.3.2.1 Steps of Staining 10.3.2.2 Results 10.3.3 Weigert’s Resorcin-Fuchsin Stain [5] 10.3.3.1 Steps of Staining 10.3.3.2 Result 10.3.4 Orcein for Elastic Fibres 10.3.4.1 Steps of Staining 10.3.4.2 Result 10.3.5 Fibrin and Cross Striation of the Muscle 10.3.5.1 Phosphotungstic acid Haematoxylin (PTAH) [6, 7] Solutions 10.3.5.2 Steps of Staining 10.3.5.3 Result (Fig. 10.5) References 11: Amyloid Staining 11.1 Introduction 11.2 Primary Amyloidosis 11.3 Stains for Amyloid 11.3.1 Alkaline Congo Red Stain [4] 11.3.1.1 Solution 1% Sodium Hydroxide Saturated Sodium Chloride in Ethanol (80%) Alkaline Alcohol Sodium Chloride Solution Alkaline Congo Red Stock Solution Working Solution of Congo Red 11.3.1.2 Steps of Staining 11.3.1.3 Result (Fig. 11.2) 11.3.2 Congo Red Stain by Highman [5] 11.3.2.1 Congo red Solution 11.3.2.2 Potassium Hydroxide (0.2%) 11.3.2.3 Steps 11.3.2.4 Result 11.3.3 Thioflavin T Stain [6] 11.3.3.1 Thioflavin T Solution 11.3.3.2 Steps 11.3.3.3 Result References 12: Stains for the Microbial Organisms 12.1 Bacteria 12.1.1 Gram’s Stain [4, 5] 12.1.1.1 Reagents Crystal violet solution Lugol’s Iodine Basic Fuchsin 12.1.1.2 Steps of Staining 12.1.1.3 Result 12.2 Ziehl Neelsen Stain 12.2.1 Reagents 12.2.1.1 Carbol-fuchsin 12.2.1.2 Methylene Blue 12.2.1.3 Acid Alcohol 12.2.2 Steps of Staining 12.2.2.1 Result (Fig. 12.1) 12.3 Fite Acid-fast Stain for Leprosy [6] 12.3.1 Methylene blue 12.3.2 Carbol-fuchsin 12.3.3 Sulphuric Acid (5%) 12.3.4 Xylene in Peanut Oil Solution 12.3.5 Steps of Staining 12.3.5.1 Result 12.4 Fungal Infection 12.4.1 Grocott’s Methenamine Silver [7] 12.4.2 Reagents 12.4.2.1 Stock Solution of Methenamine Silver 12.4.2.2 Sodium Borate Solution (5%) 12.4.2.3 Methenamine Silver Working Solution 12.4.2.4 Sodium Thiosulphate Solution (5%) 12.4.2.5 Sodium Bisulphite (1%) 12.4.2.6 Chromic Acid (2%) 12.4.2.7 Gold Chloride Solution (0.1%) 12.4.2.8 Stock Solution of Light Green (0.2%) 12.4.2.9 Light Green Working Solution 12.4.3 Steps of Staining 12.4.4 Result (Fig. 12.3) 12.5 Spirochaetes 12.5.1 Warthin and Starry Technique [8] 12.5.1.1 Reagents Buffer Solution Silver Solution Developer Solution 12.5.1.2 Steps 12.5.2 Viral Inclusions 12.5.2.1 Phloxine Tartrazine Stain Reagents 12.5.2.2 Steps of Staining 12.5.2.3 Result References Part II: Basic Laboratory Techniques in Cytology Laboratory 13: Cytology Sample Procurement, Fixation and Processing 13.1 Introduction 13.2 Sample Collection 13.2.1 Cervical Cytology [1, 2] 13.2.1.1 Preparation of the Patient 13.2.1.2 Collection Devices 13.2.2 Collection Proper (Box 13.1) 13.3 Respiratory Samples [3, 4] 13.3.1 Sputum Sample 13.3.2 Bronchial Brush 13.3.3 Bronchial Wash 13.3.4 Bronchoalveolar Lavage (BAL) 13.3.5 Transbronchial Needle Aspiration 13.3.6 Gastric Brush 13.3.7 Gastric Lavage 13.3.8 Endoscopic Ultrasound-guided (EUS) FNAC 13.3.8.1 Bladder Wash 13.3.8.2 Ureteric Urine 13.3.8.3 Urinary Brush 13.3.9 Effusion Fluid Sample 13.3.10 CSF and Vitreous Fluid 13.4 Fixation 13.4.1 Time of Fixation 13.4.1.1 Coating Fixatives 13.4.1.2 Major Advantages 13.4.1.3 Precautions 13.4.2 Special Fixatives 13.4.2.1 Hemorrhagic Fluid 13.4.2.2 Ingredients of Carnoy’s Fixative 13.4.2.3 Fixatives for Liquid-based Preparation 13.4.2.4 Fixatives for Cell Block 13.4.2.5 Fixatives for Electron Microscopy 13.4.2.6 Preservation of Sample Prior to Processing 13.5 Processing of Laboratory Samples 13.5.1 Receiving the Sample 13.5.2 Glass Slides and Liquid Sample 13.5.2.1 Precautions for Liquid Samples 13.5.2.2 Unique Identification Number 13.5.2.3 Laboratory Bar Code 13.6 Processing 13.6.1 Processing of Sputum (Fig. 13.7) 13.6.2 Processing of Fluid: Urine, Body Fluids, Lavage 13.6.3 The Basic Principle of Centrifuge 13.6.4 Millipore Filtration 13.6.5 Processing of Hemorrhagic Fluid 13.6.6 Cell Block [5] 13.6.7 Compact Cell Block Technique References 14: Routine Staining in Cytology Laboratory 14.1 Papanicolaou’s Stain [1] 14.1.1 Dyes Used in Papanicolaou’s Staining 14.1.2 Principle of Basic Steps (Fig. 14.1) 14.1.3 Papanicolaou’s Staining Steps 14.1.3.1 Results (Figs. 14.2, 14.3, and 14.4) 14.1.3.2 Hematoxylin Solution for Papanicolaou’s Stain 14.1.3.3 EA Solution 14.1.3.4 Orange G Solution 14.1.4 Bluing Solution 14.1.4.1 Lithium Carbonate Solution Stock Solution Working Solution 14.2 Precautions to Be Taken in Papanicolaou’s Staining 14.2.1 Staining Solutions 14.2.2 Coverslip 14.2.3 Staining Proper 14.2.4 De-staining and Re-staining the Smear 14.3 May Grunwald Giemsa Stain 14.3.1 Steps 14.3.2 Storage of Slides Reference 15: The Basic Technique of Fine Needle Aspiration Cytology 15.1 Introduction 15.2 Technique Proper 15.2.1 Equipment (Fig. 15.2) 15.3 Fine Needle Aspiration Procedure (Box 15.2) 15.3.1 Clinical History 15.3.2 Aspiration (Fig. 15.3) 15.3.3 Smear Preparation 15.4 Fine Needle Sampling 15.4.1 Steps 15.4.2 Limitations 15.5 FNAC of Deep-Seated Lesions 15.5.1 Major Indications of Deep Seated Guided FNAC 15.5.2 USG Guided FNAC 15.5.3 Steps 15.6 Transrectal FNAC of the Prostate References Part III: Advanced Techniques in Histology and Cytology Laboratories 16: Immunocytochemistry in Histology and Cytology 16.1 Introduction 16.2 Basic Principles 16.3 Basic Immunology 16.4 Detection System 16.5 Peroxidase-Anti Peroxidase Method (Fig. 16.5) 16.5.1 Advantage 16.6 Avidin and Biotin Method 16.6.1 Advantage 16.6.2 Disadvantage 16.7 Avidin and Biotin-Conjugated Procedure 16.7.1 Advantages 16.7.2 Disadvantages 16.8 Biotin-Streptavidin Method 16.8.1 Advantages 16.8.2 Alkaline Phosphatase–Anti Alkaline Phosphatase Method [5, 6] 16.8.3 Advantages 16.8.4 Polymer-Based Labelling Method 16.8.5 Advantages 16.8.6 Catalyzed Signal Amplification (Tyramine Signal Amplification) 16.8.7 Steps 16.8.8 The Sample of Tissues for Immunocytochemistry 16.8.8.1 Histopathology 16.8.8.2 Cytology 16.8.9 Sample Collection 16.8.9.1 Histopathology 16.8.9.2 Fixation 16.8.10 Precautions to Have a Good Fixation 16.8.10.1 Antigen Retrieval Microwave Retrieval 16.8.10.2 Requirements 16.8.10.3 Steps 16.8.10.4 Warning 16.8.10.5 Pressure Cooker Heating 16.8.10.6 Requirements 16.8.10.7 Steps 16.8.10.8 Precautions 16.8.10.9 Water Bath Heating 16.8.10.10 Requirements 16.8.10.11 Steps 16.9 Immunocytochemistry Technique 16.9.1 Control 16.9.2 Steps 16.9.2.1 Chromogen 16.9.2.2 Tris Buffered Saline 16.10 Selection of Primary Antibody 16.10.1 The Dilution of the Primary Antibody 16.10.2 Quality Control 16.10.3 Troubleshooting in Immunocytochemistry 16.11 Automated Immunostaining Platform 16.11.1 Types of Automated Immunostaining Platforms 16.11.2 Reagents Delivery Systems 16.11.3 Clinical Applications of Immunochemistry 16.12 Diagnostic Immunocytochemistry 16.12.1 Mesothelial Markers 16.12.1.1 Calretinin 16.12.1.2 HBME-1 16.12.1.3 Wilms’ Tumour Gene 1 (WT-1) 16.12.1.4 D2-40 16.12.2 Adenocarcinoma Markers in Effusion Fluid 16.12.2.1 BER EP4 16.12.2.2 Carcinoembryonic Antigen (CEA) 16.12.2.3 MOC 31 16.12.2.4 Leu M1 (CD 15) 16.12.3 Different Epithelial Markers 16.12.3.1 Cytokeratin 16.12.4 Mesenchymal Markers 16.12.4.1 Skeletal Muscle 16.12.4.2 Smooth Muscle 16.12.4.3 Peripheral Nerve Sheath Markers 16.12.4.4 Marker of Vascular Tumours 16.12.4.5 Marker of Miscellaneous Soft Tissue Tumour 16.12.5 Neuroendocrine Markers 16.12.6 Lymphoid Markers 16.12.7 Melanoma Markers 16.12.8 Germ Cell Markers 16.12.9 Site-specific Antibody in Different Epithelial Malignancies 16.12.10 PSA and Androgen Receptor 16.12.11 Androgen Receptor 16.12.12 TTF 16.12.13 Estrogen and Progesterone Receptors (ER and PR) 16.13 Immunocytochemistry of Round Cell Tumour 16.14 Immunocytochemistry for Therapy and Management 16.14.1 Breast Carcinoma 16.14.2 Estrogen and Progesterone Receptors 16.14.3 Her 2/Neu 16.15 Gastrointestinal Stromal Tumor 16.15.1 Lung Carcinoma References 17: Flow Cytometry: Basic Principles, Procedure, and Applications in Pathology 17.1 Introduction 17.2 Principle of Flow Cytometry 17.3 The Flow Cytometer Instrument 17.3.1 Light Emission and Scattering 17.4 Flow Cytometric Cell Sorting 17.5 Dye Used 17.5.1 Fluorochrome Dye for Nucleic Acid [2] 17.6 Samples for Flow Cytometry 17.6.1 Cytology Samples 17.6.1.1 Histology Samples 17.6.2 Single-cell Preparation 17.6.3 Cellular Fixation 17.6.4 Permeabilization 17.6.5 RBC Lysing Solution 17.6.6 Control 17.6.7 Sample Processing 17.6.7.1 DNA Flow Cytometry [1] 17.6.7.2 Stock Solution of Propidium Iodide (PI) 17.6.8 Flow Cytometric Immunophenotyping (FCI) 17.6.8.1 Direct Stain 17.6.8.2 Indirect Staining Procedure [2, 3] (Fig. 17.4): 17.6.9 Data Aquisition [2] 17.6.10 Data Display and Interpretation 17.6.11 Quality Control 17.7 Targets of Application 17.8 DNA Content and Ploidy Analysis 17.8.1 Basic Principle 17.9 Clinical Application 17.9.1 DNA Content and Diagnosis 17.9.2 DNA Content and Prognosis of the Patients 17.10 Immunophenotyping of Lymphomas 17.10.1 Diagnosis: 17.10.2 Sub-classification of Lymphomas: 17.10.3 Limitations of FCI 17.10.4 Flow Cytometry Features of Different Lymphomas 17.10.5 Diagnosis of Other Lesions by FCI 17.10.6 Predicting Response to Monoclonal Therapy 17.10.7 Detection of Minimal Residual Disease 17.10.7.1 Steps [17] 17.10.7.2 Apoptosis [18, 19] 17.10.8 Assessment of Sub-G1 Fraction of Apoptotic Cells 17.10.9 Apoptosis Detection by Annexin V Assay References 18: Digital Pathology 18.1 Introduction 18.2 What Is Digital Pathology? 18.2.1 Comparison of Traditional Pathology and Digital Pathology 18.2.2 Workflow of Digital Pathology 18.2.3 Basic Instruments and Software in Digital Pathology (Box 18.1) 18.3 Whole Slide Imaging (WSI) 18.3.1 Hardware 18.3.2 Software 18.3.3 Commercially Available WSI 18.3.4 Advantages of Digital Slides 18.3.5 Disadvantages of Digital Slides 18.3.6 Concordance of Glass Slides and Digital Slides 18.3.7 Guidelines of Clinical Diagnostic Application of WSI 18.3.8 Applications of Digital Pathology 18.3.9 Limitations and Challenges of Digital Pathology References 19: Automation in the Laboratory and Liquid-Based Cytology 19.1 Introduction 19.2 Advantages of Automation in Laboratory 19.2.1 The Various Stages of Automation 19.2.2 Tissue Processing 19.3 Automated Immunostaining Platform (AIP) 19.3.1 Digitization of Slide 19.4 Cytology Processing 19.4.1 Advantages of LBC over Conventional Smear 19.4.2 Limitations of Liquid-based Cytology 19.4.3 Collection Procedure of LBC 19.5 Sample Processing 19.5.1 ThinPrep (Cytic, UK) (Fig. 19.5) 19.5.1.1 Dispersion and Collection of the Cells on the Filter 19.5.1.2 SurePath Test (Fig. 19.6) Cell Enrichment Resuspension Cell Sedimentation 19.6 Comparison of These Two Techniques 19.7 Automated Screening Devices in Cytology 19.7.1 BD FocalPoint GS Imaging System [6, 7] 19.7.2 BD FocalPoint GS Review Station 19.7.3 HOLOGIC ThinPrep Imaging System [8, 9] 19.7.4 Review Scope 19.7.5 Comparison of Manual and Automated Devices 19.8 Artificial Neural Network (ANN) in Pathology References 20: Polymerase Chain Reaction: Principle, Technique and Applications in Pathology 20.1 Introduction 20.2 What is PCR and How Does it Work? 20.3 Steps of PCR 20.3.1 Essential Ingredients of PCR 20.4 Procedure Proper [3, 4] 20.4.1 Basic Precautions 20.4.2 Equipment 20.4.3 Addition of the Ingredients in a 50 μL PCR Tube 20.4.4 Remember 20.4.5 Thermal Cycling 20.4.5.1 Standard Steps 20.4.6 Purification of the Amplified Product 20.4.7 Troubleshooting 20.4.8 Enhancing PCR Products Formation 20.5 Types of PCR 20.6 Applications of PCR References 21: Fluorescent In Situ Hybridisation Techniques in Pathology: Principle, Technique and Applications 21.1 Introduction 21.1.1 Applications of FISH 21.1.2 The Principles of FISH 21.2 Steps to do FISH [5–7] 21.2.1 Histology and Cytology Specimen 21.3 Troubleshooting 21.3.1 Different Types of FISH 21.3.2 Basic Principles (Fig. 21.3) 21.3.3 CGH Method [13] 21.3.4 Array-based CGH [14] 21.3.4.1 Basic Steps of a-CGH (Fig. 21.4) 21.4 Different Other Varieties of FISH [15, 16] References 22: Tissue Microarray in Pathology: Principal, Technique and Applications 22.1 Introduction 22.2 Tissue Microarray Technique 22.3 TMA Construction and Generation of Grid 22.4 Designing the Grid [4] 22.5 Clinical Applications of TMA References 23: Sanger Sequencing and Next Generation Gene Sequencing: Basic Principles and Applications in Pathology 23.1 Sanger Sequencing 23.1.1 Reagents Needed 23.1.2 Main Steps 23.1.3 Limitations 23.2 Maxam Gilbert Technique 23.2.1 Main Steps 23.2.2 Limitations 23.3 Next-generation Sequencing 23.3.1 Second-generation Sequencing 23.3.2 Advantages 23.3.3 Limitations 23.4 Illumina Solexa 23.4.1 Advantage 23.4.2 Limitations 23.5 Ion Semiconductor Sequencing (Ion Torrent) 23.5.1 Advantages 23.5.2 Disadvantage 23.6 Third Generation 23.6.1 Single-Molecule Real-Time Sequencing 23.6.1.1 Advantages 23.6.1.2 Disadvantage 23.7 Fourth Generation Sequencing 23.7.1 Nanopore Sequencing (Fig. 23.8) 23.7.1.1 Advantage 23.7.2 Other Technologies 23.7.2.1 Advantages 23.7.3 DNA Nanoball Sequencing 23.7.3.1 DNA Nanoball Creation 23.7.3.2 Loading Onto Flow Cell for Sequencing 23.7.4 RNA-Seq 23.7.5 Applications of NGS 23.7.5.1 Limitations 23.7.6 Limitations References 24: Liquid Biopsy: Basic Principles, Techniques and Applications 24.1 Introduction 24.2 Conventional Biopsy Versus Liquid Biopsy? 24.3 The Components of Liquid Biopsy 24.4 Enrichment of the Contents of Liquid Biopsy 24.5 The Molecular Techniques to Do in Liquid Biopsy 24.6 Clinical Applications [2, 3] References 25: Artificial Neural Network in Pathology: Basic Principles and Applications 25.1 Introduction 25.2 ANN Versus Ordinary Computer 25.3 Artificial Neural Network Versus Biological Neuron 25.4 Activation 25.5 Learning of ANN 25.5.1 Multilayer Perceptron Architecture 25.5.2 Steps to Building an ANN 25.5.2.1 The Different Types of the Artificial Neural Network 25.5.2.2 Deep Learning (DL) Neural Network 25.5.2.3 Accuracy of the ANN Model 25.5.3 Main Challenges of ANN 25.5.4 Application of ANN 25.5.4.1 Specific Applications of ANN 25.5.5 Limitations of ANN References Part IV: Microscopy, Quality Control and Laboratory Organization 26: Compound Light Microscope and Other Different Microscopes 26.1 Light 26.2 Colours 26.3 Image Generation and Human Vision 26.3.1 Image Formation by the Light Microscope (Fig. 26.6) 26.3.1.1 Anatomical Components of a Light Microscope (Fig. 26.7) 26.4 Optical Components [2, 3] 26.5 How to Take Care and Handle Your Microscope 26.6 Other Types of Microscope 26.6.1 Darkfield Microscope 26.6.1.1 Use 26.6.2 Bright-Field Microscope 26.6.3 Phase-contrast Microscope 26.6.3.1 Applications 26.6.4 Inverted Microscope 26.6.5 Dissecting Microscope 26.6.5.1 Principle 26.6.5.2 Applications References 27: Fluorescence Microscope, Confocal Microscope and Other Advanced Microscopes: Basic Principles and Applications in Pathology 27.1 Transmitted Fluorescent Microscope 27.2 Incident Fluorescent Microscope 27.2.1 The Dye Used in Fluorescence Microscope 27.2.2 Applications of Fluorescence Microscope 27.3 Confocal Microscopy 27.3.1 Advantages (Box 27.1) 27.4 Limitations of CFM 27.5 Applications of CFM [5–7] 27.6 Two-Photon Microscopy 27.6.1 Advantages 27.7 4Pi Microscopy 27.8 Spatially Modulated Illumination Microscopy 27.8.1 Scanning Probe Microscope 27.8.1.1 Scanning Tunnelling Microscope (STM) [11] 27.8.1.2 Advantages of AFM 27.8.1.3 Limitations 27.8.2 Laser Capture Microdissection 27.8.2.1 Advantages 27.8.2.2 Limitations 27.8.2.3 Applications 27.8.3 Expression Microdissection 27.8.3.1 Principle and Steps (Fig. 27.12) 27.8.3.2 Advantages References 28: Electron Microscopy: Principle, Components, Optics and Specimen Processing 28.1 Microscope Column and Electronic Optics (Fig. 28.2b) 28.2 Specimen and Electron Interaction 28.2.1 Backscattered Electrons 28.2.2 Excited Electrons of the Atom 28.3 Electron Interaction in the Transmission Electron Microscope 28.4 Sample Preparation for TEM 28.4.1 Combined Fixation Technique 28.4.2 Embedding 28.4.3 Knives 28.4.4 Staining of the Sections 28.4.4.1 Lead Stain 28.4.4.2 Stain 28.4.4.3 Reynold’s Lead Citrate solution 28.4.5 Uranyl Salt 28.5 Scanning Electron Microscopy [4] 28.5.1 Operational Principle References 29: Quality Control and Laboratory Organization 29.1 Introduction 29.2 Quality Control 29.2.1 Gold Standard 29.2.2 Record Keeping 29.3 Audit 29.3.1 The Beneficial Points of the Internal Audit 29.3.2 Stages of Audit 29.3.3 Components of Audit 29.4 External Quality Assurance 29.4.1 Laboratory Accreditations 29.4.2 Pre-requisite for Laboratory Accreditation 29.4.3 Process of Accreditatation 29.4.4 Advantages of Laboratory Accreditations 29.5 Laboratory Organization References 30: Laboratory Safety and Laboratory Waste Disposal 30.1 Laboratory Waste Disposal 30.1.1 Basic Ways to Waste Management 30.1.2 Steps of Biomedical Waste Disposal References Multiple Choice Questions for the Self-Assessment Answers of Multiple-Choice Questions