ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Basic Analysis: Functions of a Real Variable

دانلود کتاب تحلیل پایه: توابع یک متغیر واقعی

Basic Analysis: Functions of a Real Variable

مشخصات کتاب

Basic Analysis: Functions of a Real Variable

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1138055026, 9781138055025 
ناشر: CRC Press 
سال نشر: 2020 
تعداد صفحات: 595 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 25 مگابایت 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Basic Analysis: Functions of a Real Variable به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تحلیل پایه: توابع یک متغیر واقعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تحلیل پایه: توابع یک متغیر واقعی



تحلیل پایه اول: توابع یک متغیر واقعی برای دانش آموزانی طراحی شده است که حساب دیفرانسیل و انتگرال معمولی و دنباله معادلات دیفرانسیل معمولی و یک دوره پایه در جبر خطی را تکمیل کرده اند. این یک دوره حیاتی در استفاده از انتزاع است، اما اولین جلد از یک رشته از دروس است که دانش آموزان را برای تبدیل شدن به دانشمندان متخصص آماده می کند.

این کتاب با هدف ایجاد تعادل بین تئوری و انتزاع با توضیحات و استدلال‌های روشن نوشته شده است تا دانشجویانی که از حوزه‌های مختلف هستند بتوانند این متن را دنبال کنند و از آن برای خودآموزی استفاده کنند. همچنین می‌تواند به‌عنوان متن تکمیلی برای هر کسی که کارشان مستلزم جذب مفاهیم انتزاعی‌تر ریاضی به عنوان بخشی از رشد حرفه‌ای خود است، استفاده شود.

ویژگی‌ها

< ul>
  • می تواند به عنوان یک کتاب درسی سنتی و همچنین برای خودآموزی استفاده شود
  • مناسب برای مقطع کارشناسی دانش‌آموزان ریاضی، یا برای آن‌هایی که در رشته‌های دیگر نیاز به یک پایه محکم در انتزاع دارند
  • بر یادگیری چگونگی درک پیامدهای مفروضات با استفاده از ابزارهای مختلف تأکید می‌کند. برای ارائه براهین قضایا

  • توضیحاتی درمورد کتاب به خارجی

    Basic Analysis I: Functions of a Real Variable is designed for students who have completed the usual calculus and ordinary differential equation sequence and a basic course in linear algebra. This is a critical course in the use of abstraction, but is just first volume in a sequence of courses which prepare students to become practicing scientists.

    This book is written with the aim of balancing the theory and abstraction with clear explanations and arguments, so that students who are from a variety of different areas can follow this text and use it profitably for self-study. It can also be used as a supplementary text for anyone whose work requires that they begin to assimilate more abstract mathematical concepts as part of their professional growth.

    Features

    • Can be used as a traditional textbook as well as for self-study
    • Suitable for undergraduate mathematics students, or for those in other disciplines requiring a solid grounding in abstraction
    • Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions


    فهرست مطالب

    Cover
    Half Title
    Title Page
    Copyright Page
    Dedication
    Abstract
    Acknowledgments
    Table of Contents
    I: Introduction
    	1: Introduction
    		1.1 Table of Contents
    II: Understanding Smoothness
    	2: Proving Propositions
    		2.1 Mathematical Induction
    			2.1.1 Homework
    		2.2 More Examples
    		2.3 More Abstract Proofs and Even Trickier POMIs
    			2.3.1 Homework
    		2.4 Some Contradiction Proofs
    		2.5 Triangle Inequalities.
    			2.5.1 A First Look at the Cauchy - Schwartz Inequality
    			2.5.2 Homework
    		2.6 The Supremum and Infimum of a Set of Real Numbers
    			2.6.1 Bounded Sets
    			2.6.2 Least Upper Bounds and Greatest Lower Bounds
    			2.6.3 The Completeness Axiom and Consequences
    			2.6.4 Some Basic Results
    			2.6.5 Homework
    	3: Sequences of Real Numbers
    		3.1 Basic Definitions
    		3.2 The Definition of a Sequence
    			3.2.1 Homework
    		3.3 The Convergence of a Sequence
    			3.3.1 Proofs of Divergence
    			3.3.2 Uniqueness of Limits and So Forth
    			3.3.3 Proofs of Convergence
    			3.3.4 Homework
    		3.4 Sequence Spaces
    			3.4.1 Limit Theorems
    			3.4.2 Some Examples
    			3.4.3 Homework
    	4: Bolzano - Weierstrass Results
    		4.1 Bounded Sequences with a Finite Range
    		4.2 Sequences with an Infinite Range
    			4.2.1 Extensions to ℜ2
    		4.3 Bounded Infinite Sets
    			4.3.1 Homework
    			4.3.2 Bounded Infinite Sets Have at Least One Accumulation Point
    			4.3.3 Cluster Points of a Set
    		4.4 More Set and Sequence Related Topics
    			4.4.1 Homework
    			4.4.2 Some Set Properties
    		4.5 The Notion of Sequential Compactness
    			4.5.1 Sequential Compactness and the Existence of Extrema
    			4.5.2 Homework
    		4.6 The Deeper Structure of Sequences
    			4.6.1 The Limit Inferior and Limit Superior of a Sequence
    			4.6.2 Limit Inferior* Star and Limit Superior*
    			4.6.3 Homework
    	5: Topological Compactness
    		5.1 More Set Theory
    		5.2 The Notion of Topological Compactness
    			5.2.1 Finite Closed Intervals and Topological Compactness
    			5.2.2 Homework
    			5.2.3 The Equivalence of Topological Compactness and Closed and Bounded
    			5.2.4 Homework
    	6: Function Limits
    		6.1 The Limit Inferior and Limit Superior of Functions
    			6.1.1 A Poorly Behaved Function
    			6.1.2 A Function with Only One Set of Cluster Points That Is One Value
    			6.1.3 A Function with All Cluster Point Sets Having Two Values
    			6.1.4 Homework
    			6.1.5 Examples of Cluster Points of Functions
    			6.1.6 C∞ Bump Functions
    		6.2 Limits of Functions
    	7: Continuity
    		7.1 Continuity
    			7.1.1 Homework
    			7.1.2 Dirichlet’s Function: Lack of Continuity at Each Rational Number
    		7.2 Limit Examples
    			7.2.1 Right and Left Continuity at a Point
    			7.2.2 Homework
    		7.3 Limit and Continuity Proofs
    		7.4 The Algebra of Limits
    			7.4.1 The Algebra of Continuity
    		7.4.2 Homework
    	8: Consequences of Continuity on Intervals
    		8.1 Domains of Continuous Functions
    		8.2 The Intermediate Value Theorem
    		8.3 Continuous Images of Compact Sets
    		8.4 Continuity in Terms of Inverse Images of Open Sets
    			8.4.1 Homework
    	9: Lower Semicontinuous and Convex Functions
    		9.1 Lower Semicontinuous Functions
    		9.2 Convex Functions
    			9.2.1 Homework
    		9.3 More on Convex Functions
    		9.4 Subdifferentials
    			9.4.1 Homework
    	10: Basic Differentiability
    		10.1 An Introduction to Smoothness
    		10.2 A Basic Evolutionary Model
    			10.2.1 A Difference Equation
    			10.2.2 The Functional Form of the Frequency
    			10.2.3 Abstracting Generation Time
    		10.3 Sneaking Up on Differentiability
    			10.3.1 Change and More Change
    			10.3.2 Homework
    		10.4 Limits, Continuity and Right and Left Hand Slope Limits
    		10.5 Differentiability
    			10.5.1 Homework
    	11: The Properties of Derivatives
    		11.1 Simple Derivatives
    		11.2 The Product Rule
    		11.3 The Quotient Rule
    			11.3.1 Homework
    		11.4 Function Composition and Continuity
    		11.5 Chain Rule
    			11.5.1 Homework
    		11.6 Sin, Cos and All That!
    			11.6.1 Examples
    			11.6.2 A New Power Rule
    			11.6.3 More Complicated Derivatives
    			11.6.4 Homework
    	12: Consequences of Derivatives
    		12.1 Taylor Polynomials
    			12.1.1 Zeroth Order Taylor Polynomials
    			12.1.2 The Order One Taylor Polynomial
    			12.1.3 Second Order Approximations
    			12.1.4 Homework
    			12.1.5 Taylor Polynomials in General
    		12.2 Differences of Functions
    			12.2.1 Two Close Cosines
    			12.2.2 Two Close Exponentials
    			12.2.3 Approximations in a Cancer Model
    			12.2.4 Homework
    	13: Exponential and Logarithm Functions
    		13.1 The Number e: First Definition
    			13.1.1 Homework
    		13.2 The Number e: Second Definition
    		13.3 The Exponential Function
    			13.3.1 The Properties of the Exponential Function
    		13.4 Taylor Series
    			13.4.1 Homework
    		13.5 Inverse Functions
    			13.5.1 Homework
    			13.5.2 Continuity of the Inverse Function
    		13.6 L’Hôpital’s Rules
    	14: Extremal Theory for One Variable
    		14.1 Extremal Values
    		14.2 The First Derivative Test
    		14.3 Cooling Models
    			14.3.1 Homework
    	15: Differentiation in ℜ2 and ℜ3
    		15.1 ℜ2 and ℜ3
    		15.2 Functions of Two Variables
    			15.2.1 Homework
    		15.3 Continuity
    			15.3.1 Homework
    		15.4 Partial Derivatives
    		15.5 Tangent Planes
    			15.5.1 Homework
    		15.6 Derivatives in 2D!
    		15.7 Chain Rule
    			15.7.1 Homework
    		15.8 Tangent Plane Approximation Error
    		15.9 Hessian Approximations
    			15.9.1 Homework
    		15.10 Partials Existing Does Not Necessarily Imply Differentiable
    		15.11 When Do Mixed Partials Match?
    			15.11.1 Homework
    	16: Multivariable Extremal Theory
    		16.1 Extrema Ideas
    			16.1.1 Saddle Points
    			16.1.2 Homework
    		16.2 Symmetric Problems
    			16.2.1 A Canonical Form for a Symmetric Matrix
    			16.2.2 Signed Definite Matrices
    		16.3 A Deeper Look at Extremals
    			16.3.1 Extending to Three Variables
    			16.3.2 Homework
    III: Integration and Sequences of Functions
    	17: Uniform Continuity
    		17.1 Uniform Continuity
    			17.1.1 Homework
    		17.2 Uniform Continuity and Differentiation
    			17.2.1 Homework
    	18: Cauchy Sequences of Real Numbers
    		18.1 Cauchy Sequences
    		18.2 Completeness
    		18.3 The Completeness of the Real Numbers
    		18.4 Uniform Continuity and Compact Domains
    			18.4.1 Homework
    	19: Series of Real Numbers
    		19.1 Series of Real Numbers
    		19.2 Basic Facts about Series
    			19.2.1 An ODE Example: Things to Come
    			19.2.2 Homework
    		19.3 Series with Non-Negative Terms
    		19.4 Comparison Tests
    		19.5 p Series
    		19.6 Examples
    			19.6.1 Homework
    	20: Series in General
    		20.1 Some Specific Tests for Convergence
    			20.1.1 Geometric Series
    			20.1.2 The Ratio Test
    			20.1.3 The Root Test
    			20.1.4 Examples
    			20.1.5 A Taste of Power Series
    		20.2 Cauchy - Schwartz and Minkowski Inequalities
    			20.2.1 Conjugate Exponents
    			20.2.2 Hölder’s Inequality
    			20.2.3 Minkowski’s Inequality
    			20.2.4 The ℓp Spaces and their Metric
    			20.2.5 Homework
    		20.3 Convergence in a Metric Space
    		20.4 The Completeness of Some Spaces
    			20.4.1 The Completeness of (C([a, b]), ∥⋅∥∞)
    			20.4.2 The Completeness of (ℓ∞; ∥⋅∥∞)
    			20.4.3 The Completeness of (ℓp, ∥⋅∥p)
    			20.4.4 Homework
    	21: Integration Theory
    		21.1 Basics
    			21.1.1 Partitions of [a, b]
    			21.1.2 Riemann Sums
    			21.1.3 Riemann Sums in Octave
    			21.1.4 Graphing Riemann Sums
    			21.1.5 Uniform Partitions and Riemann Sums
    			21.1.6 Refinements of Partitions
    			21.1.7 Homework
    			21.1.8 Uniform Partition Riemann Sums and Convergence
    		21.2 Defining The Riemann Integral
    			21.2.1 Fundamental Integral Estimates
    	22: Existence of the Riemann Integral and Properties
    		22.1 The Darboux Integral
    			22.1.1 Upper and Lower Darboux Sums
    			22.1.2 Upper and Lower Darboux Integrals and Darboux Integrability
    		22.2 The Darboux and Riemann Integrals are Equivalent
    		22.3 Properties
    		22.4 Riemann Integrable Functions
    			22.4.1 Homework
    		22.5 More Properties
    	23: The Fundamental Theorem of Calculus (FTOC)
    		23.1 The Proof of the FTOC
    		23.2 The Cauchy FTOC
    		23.3 Integral Mean Value Results
    		23.4 Approximation of the Riemann Integral
    			23.4.1 Homework
    		23.5 Substitution
    		23.6 The Natural Logarithm Function
    			23.6.1 Logarithm Functions
    			23.6.2 Worked Out Examples: Integrals
    			23.6.3 The Exponential Function
    			23.6.4 Positive Powers of e
    			23.6.5 Negative Integer Powers of e
    			23.6.6 Adding Natural Logarithms
    			23.6.7 Logarithm Properties
    			23.6.8 The Exponential Function Properties
    		23.7 When Do Riemann Integrals Match?
    			23.7.1 When Do Two Functions Have the Same Integral?
    			23.7.2 Calculating the FTOC Function
    	24: Convergence of Sequences of Functions
    		24.1 The Weierstrass Approximation Theorem
    			24.1.1 Bernstein Code Implementation
    			24.1.2 A Theoretical Example
    		24.2 The Convergence of a Sequence of Functions
    			24.2.1 Homework
    			24.2.2 More Complicated Examples
    			24.2.3 What Do Our Examples Show Us?
    			24.2.4 Sequence Convergence and Integration
    			24.2.5 More Conclusions
    		24.3 Basic Theorems
    			24.3.1 Limit Interchange Theorems for Integration
    			24.3.2 Homework
    		24.4 The Interchange Theorem for Differentiation
    	25: Series of Functions and Power Series
    		25.1 The Sum of Powers of t Series
    			25.1.1 More General Series
    			25.1.2 Homework
    		25.2 Uniform Convergence Tests
    			25.2.1 Homework
    		25.3 Integrated Series
    			25.3.1 Homework
    		25.4 Differentiating Series
    			25.4.1 Higher Derived Series
    			25.4.2 Homework
    		25.5 Power Series
    			25.5.1 Homework
    	26: Riemann Integration: Discontinuities and Compositions
    		26.1 Compositions of Riemann Integrable Functions
    		26.2 Content Zero
    			26.2.1 The Riemann - Lebesgue Lemma
    			26.2.2 Equivalence Classes of Riemann Integrable Functions
    	27: Fourier Series
    		27.1 Vector Space Notions
    			27.1.1 Homework
    			27.1.2 Inner Products
    			27.1.3 Homework
    		27.2 Fourier Series
    		27.3 Fourier Series Components
    			27.3.1 Orthogonal Functions
    			27.3.2 Fourier Coefficients Revisited
    		27.4 Fourier Series Convergence
    			27.4.1 Rewriting SN(x)
    			27.4.2 Rewriting SN – f
    			27.4.3 Convergence
    		27.5 Fourier Sine Series
    			27.5.1 Homework
    		27.6 Fourier Cosine Series
    			27.6.1 Homework
    		27.7 More Convergence Fourier Series
    			27.7.1 Bounded Coefficients
    			27.7.2 The Derivative Series
    			27.7.3 Derivative Bounds
    			27.7.4 Uniform Convergence for f
    			27.7.5 Extending to Fourier Sine and Fourier Cosine Series
    		27.8 Code Implementation
    			27.8.1 Inner Products Revisited
    			27.8.2 General GSO
    			27.8.3 Fourier Approximations
    			27.8.4 Testing the Approximations
    	28: Applications
    		28.1 Solving Differential Equations
    			28.1.1 Homework
    		28.2 Some ODE Techniques
    			28.2.1 Variation of Parameters
    			28.2.2 Homework
    			28.2.3 Boundary Value Problems
    		28.3 Linear Partial Differential Equations
    			28.3.1 Determining the Separation Constant
    			28.3.2 Convergence Analysis for Fourier Series Revisited
    			28.3.3 Fourier Series Convergence Analysis
    			28.3.4 Homework
    			28.3.5 Convergence of the Cable Solution: Simplified Analysis
    			28.3.6 Homework
    		28.4 Power Series for ODE
    			28.4.1 Constant Coefficient ODEs
    			28.4.2 Homework
    			28.4.3 Polynomial Coefficient ODEs
    			28.4.4 Homework
    IV: Summing It All Up
    	29: Summary
    V: References
    VI: Detailed Index
    	Index




    نظرات کاربران