دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: James K. Peterson
سری:
ISBN (شابک) : 1138055026, 9781138055025
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 595
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 مگابایت
در صورت تبدیل فایل کتاب Basic Analysis: Functions of a Real Variable به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل پایه: توابع یک متغیر واقعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تحلیل پایه اول: توابع یک متغیر واقعی برای دانش آموزانی طراحی شده است که حساب دیفرانسیل و انتگرال معمولی و دنباله معادلات دیفرانسیل معمولی و یک دوره پایه در جبر خطی را تکمیل کرده اند. این یک دوره حیاتی در استفاده از انتزاع است، اما اولین جلد از یک رشته از دروس است که دانش آموزان را برای تبدیل شدن به دانشمندان متخصص آماده می کند.
این کتاب با هدف ایجاد تعادل بین تئوری و انتزاع با توضیحات و استدلالهای روشن نوشته شده است تا دانشجویانی که از حوزههای مختلف هستند بتوانند این متن را دنبال کنند و از آن برای خودآموزی استفاده کنند. همچنین میتواند بهعنوان متن تکمیلی برای هر کسی که کارشان مستلزم جذب مفاهیم انتزاعیتر ریاضی به عنوان بخشی از رشد حرفهای خود است، استفاده شود.
ویژگیها
< ul>Basic Analysis I: Functions of a Real Variable is designed for students who have completed the usual calculus and ordinary differential equation sequence and a basic course in linear algebra. This is a critical course in the use of abstraction, but is just first volume in a sequence of courses which prepare students to become practicing scientists.
This book is written with the aim of balancing the theory and abstraction with clear explanations and arguments, so that students who are from a variety of different areas can follow this text and use it profitably for self-study. It can also be used as a supplementary text for anyone whose work requires that they begin to assimilate more abstract mathematical concepts as part of their professional growth.
Features
Cover Half Title Title Page Copyright Page Dedication Abstract Acknowledgments Table of Contents I: Introduction 1: Introduction 1.1 Table of Contents II: Understanding Smoothness 2: Proving Propositions 2.1 Mathematical Induction 2.1.1 Homework 2.2 More Examples 2.3 More Abstract Proofs and Even Trickier POMIs 2.3.1 Homework 2.4 Some Contradiction Proofs 2.5 Triangle Inequalities. 2.5.1 A First Look at the Cauchy - Schwartz Inequality 2.5.2 Homework 2.6 The Supremum and Infimum of a Set of Real Numbers 2.6.1 Bounded Sets 2.6.2 Least Upper Bounds and Greatest Lower Bounds 2.6.3 The Completeness Axiom and Consequences 2.6.4 Some Basic Results 2.6.5 Homework 3: Sequences of Real Numbers 3.1 Basic Definitions 3.2 The Definition of a Sequence 3.2.1 Homework 3.3 The Convergence of a Sequence 3.3.1 Proofs of Divergence 3.3.2 Uniqueness of Limits and So Forth 3.3.3 Proofs of Convergence 3.3.4 Homework 3.4 Sequence Spaces 3.4.1 Limit Theorems 3.4.2 Some Examples 3.4.3 Homework 4: Bolzano - Weierstrass Results 4.1 Bounded Sequences with a Finite Range 4.2 Sequences with an Infinite Range 4.2.1 Extensions to ℜ2 4.3 Bounded Infinite Sets 4.3.1 Homework 4.3.2 Bounded Infinite Sets Have at Least One Accumulation Point 4.3.3 Cluster Points of a Set 4.4 More Set and Sequence Related Topics 4.4.1 Homework 4.4.2 Some Set Properties 4.5 The Notion of Sequential Compactness 4.5.1 Sequential Compactness and the Existence of Extrema 4.5.2 Homework 4.6 The Deeper Structure of Sequences 4.6.1 The Limit Inferior and Limit Superior of a Sequence 4.6.2 Limit Inferior* Star and Limit Superior* 4.6.3 Homework 5: Topological Compactness 5.1 More Set Theory 5.2 The Notion of Topological Compactness 5.2.1 Finite Closed Intervals and Topological Compactness 5.2.2 Homework 5.2.3 The Equivalence of Topological Compactness and Closed and Bounded 5.2.4 Homework 6: Function Limits 6.1 The Limit Inferior and Limit Superior of Functions 6.1.1 A Poorly Behaved Function 6.1.2 A Function with Only One Set of Cluster Points That Is One Value 6.1.3 A Function with All Cluster Point Sets Having Two Values 6.1.4 Homework 6.1.5 Examples of Cluster Points of Functions 6.1.6 C∞ Bump Functions 6.2 Limits of Functions 7: Continuity 7.1 Continuity 7.1.1 Homework 7.1.2 Dirichlet’s Function: Lack of Continuity at Each Rational Number 7.2 Limit Examples 7.2.1 Right and Left Continuity at a Point 7.2.2 Homework 7.3 Limit and Continuity Proofs 7.4 The Algebra of Limits 7.4.1 The Algebra of Continuity 7.4.2 Homework 8: Consequences of Continuity on Intervals 8.1 Domains of Continuous Functions 8.2 The Intermediate Value Theorem 8.3 Continuous Images of Compact Sets 8.4 Continuity in Terms of Inverse Images of Open Sets 8.4.1 Homework 9: Lower Semicontinuous and Convex Functions 9.1 Lower Semicontinuous Functions 9.2 Convex Functions 9.2.1 Homework 9.3 More on Convex Functions 9.4 Subdifferentials 9.4.1 Homework 10: Basic Differentiability 10.1 An Introduction to Smoothness 10.2 A Basic Evolutionary Model 10.2.1 A Difference Equation 10.2.2 The Functional Form of the Frequency 10.2.3 Abstracting Generation Time 10.3 Sneaking Up on Differentiability 10.3.1 Change and More Change 10.3.2 Homework 10.4 Limits, Continuity and Right and Left Hand Slope Limits 10.5 Differentiability 10.5.1 Homework 11: The Properties of Derivatives 11.1 Simple Derivatives 11.2 The Product Rule 11.3 The Quotient Rule 11.3.1 Homework 11.4 Function Composition and Continuity 11.5 Chain Rule 11.5.1 Homework 11.6 Sin, Cos and All That! 11.6.1 Examples 11.6.2 A New Power Rule 11.6.3 More Complicated Derivatives 11.6.4 Homework 12: Consequences of Derivatives 12.1 Taylor Polynomials 12.1.1 Zeroth Order Taylor Polynomials 12.1.2 The Order One Taylor Polynomial 12.1.3 Second Order Approximations 12.1.4 Homework 12.1.5 Taylor Polynomials in General 12.2 Differences of Functions 12.2.1 Two Close Cosines 12.2.2 Two Close Exponentials 12.2.3 Approximations in a Cancer Model 12.2.4 Homework 13: Exponential and Logarithm Functions 13.1 The Number e: First Definition 13.1.1 Homework 13.2 The Number e: Second Definition 13.3 The Exponential Function 13.3.1 The Properties of the Exponential Function 13.4 Taylor Series 13.4.1 Homework 13.5 Inverse Functions 13.5.1 Homework 13.5.2 Continuity of the Inverse Function 13.6 L’Hôpital’s Rules 14: Extremal Theory for One Variable 14.1 Extremal Values 14.2 The First Derivative Test 14.3 Cooling Models 14.3.1 Homework 15: Differentiation in ℜ2 and ℜ3 15.1 ℜ2 and ℜ3 15.2 Functions of Two Variables 15.2.1 Homework 15.3 Continuity 15.3.1 Homework 15.4 Partial Derivatives 15.5 Tangent Planes 15.5.1 Homework 15.6 Derivatives in 2D! 15.7 Chain Rule 15.7.1 Homework 15.8 Tangent Plane Approximation Error 15.9 Hessian Approximations 15.9.1 Homework 15.10 Partials Existing Does Not Necessarily Imply Differentiable 15.11 When Do Mixed Partials Match? 15.11.1 Homework 16: Multivariable Extremal Theory 16.1 Extrema Ideas 16.1.1 Saddle Points 16.1.2 Homework 16.2 Symmetric Problems 16.2.1 A Canonical Form for a Symmetric Matrix 16.2.2 Signed Definite Matrices 16.3 A Deeper Look at Extremals 16.3.1 Extending to Three Variables 16.3.2 Homework III: Integration and Sequences of Functions 17: Uniform Continuity 17.1 Uniform Continuity 17.1.1 Homework 17.2 Uniform Continuity and Differentiation 17.2.1 Homework 18: Cauchy Sequences of Real Numbers 18.1 Cauchy Sequences 18.2 Completeness 18.3 The Completeness of the Real Numbers 18.4 Uniform Continuity and Compact Domains 18.4.1 Homework 19: Series of Real Numbers 19.1 Series of Real Numbers 19.2 Basic Facts about Series 19.2.1 An ODE Example: Things to Come 19.2.2 Homework 19.3 Series with Non-Negative Terms 19.4 Comparison Tests 19.5 p Series 19.6 Examples 19.6.1 Homework 20: Series in General 20.1 Some Specific Tests for Convergence 20.1.1 Geometric Series 20.1.2 The Ratio Test 20.1.3 The Root Test 20.1.4 Examples 20.1.5 A Taste of Power Series 20.2 Cauchy - Schwartz and Minkowski Inequalities 20.2.1 Conjugate Exponents 20.2.2 Hölder’s Inequality 20.2.3 Minkowski’s Inequality 20.2.4 The ℓp Spaces and their Metric 20.2.5 Homework 20.3 Convergence in a Metric Space 20.4 The Completeness of Some Spaces 20.4.1 The Completeness of (C([a, b]), ∥⋅∥∞) 20.4.2 The Completeness of (ℓ∞; ∥⋅∥∞) 20.4.3 The Completeness of (ℓp, ∥⋅∥p) 20.4.4 Homework 21: Integration Theory 21.1 Basics 21.1.1 Partitions of [a, b] 21.1.2 Riemann Sums 21.1.3 Riemann Sums in Octave 21.1.4 Graphing Riemann Sums 21.1.5 Uniform Partitions and Riemann Sums 21.1.6 Refinements of Partitions 21.1.7 Homework 21.1.8 Uniform Partition Riemann Sums and Convergence 21.2 Defining The Riemann Integral 21.2.1 Fundamental Integral Estimates 22: Existence of the Riemann Integral and Properties 22.1 The Darboux Integral 22.1.1 Upper and Lower Darboux Sums 22.1.2 Upper and Lower Darboux Integrals and Darboux Integrability 22.2 The Darboux and Riemann Integrals are Equivalent 22.3 Properties 22.4 Riemann Integrable Functions 22.4.1 Homework 22.5 More Properties 23: The Fundamental Theorem of Calculus (FTOC) 23.1 The Proof of the FTOC 23.2 The Cauchy FTOC 23.3 Integral Mean Value Results 23.4 Approximation of the Riemann Integral 23.4.1 Homework 23.5 Substitution 23.6 The Natural Logarithm Function 23.6.1 Logarithm Functions 23.6.2 Worked Out Examples: Integrals 23.6.3 The Exponential Function 23.6.4 Positive Powers of e 23.6.5 Negative Integer Powers of e 23.6.6 Adding Natural Logarithms 23.6.7 Logarithm Properties 23.6.8 The Exponential Function Properties 23.7 When Do Riemann Integrals Match? 23.7.1 When Do Two Functions Have the Same Integral? 23.7.2 Calculating the FTOC Function 24: Convergence of Sequences of Functions 24.1 The Weierstrass Approximation Theorem 24.1.1 Bernstein Code Implementation 24.1.2 A Theoretical Example 24.2 The Convergence of a Sequence of Functions 24.2.1 Homework 24.2.2 More Complicated Examples 24.2.3 What Do Our Examples Show Us? 24.2.4 Sequence Convergence and Integration 24.2.5 More Conclusions 24.3 Basic Theorems 24.3.1 Limit Interchange Theorems for Integration 24.3.2 Homework 24.4 The Interchange Theorem for Differentiation 25: Series of Functions and Power Series 25.1 The Sum of Powers of t Series 25.1.1 More General Series 25.1.2 Homework 25.2 Uniform Convergence Tests 25.2.1 Homework 25.3 Integrated Series 25.3.1 Homework 25.4 Differentiating Series 25.4.1 Higher Derived Series 25.4.2 Homework 25.5 Power Series 25.5.1 Homework 26: Riemann Integration: Discontinuities and Compositions 26.1 Compositions of Riemann Integrable Functions 26.2 Content Zero 26.2.1 The Riemann - Lebesgue Lemma 26.2.2 Equivalence Classes of Riemann Integrable Functions 27: Fourier Series 27.1 Vector Space Notions 27.1.1 Homework 27.1.2 Inner Products 27.1.3 Homework 27.2 Fourier Series 27.3 Fourier Series Components 27.3.1 Orthogonal Functions 27.3.2 Fourier Coefficients Revisited 27.4 Fourier Series Convergence 27.4.1 Rewriting SN(x) 27.4.2 Rewriting SN – f 27.4.3 Convergence 27.5 Fourier Sine Series 27.5.1 Homework 27.6 Fourier Cosine Series 27.6.1 Homework 27.7 More Convergence Fourier Series 27.7.1 Bounded Coefficients 27.7.2 The Derivative Series 27.7.3 Derivative Bounds 27.7.4 Uniform Convergence for f 27.7.5 Extending to Fourier Sine and Fourier Cosine Series 27.8 Code Implementation 27.8.1 Inner Products Revisited 27.8.2 General GSO 27.8.3 Fourier Approximations 27.8.4 Testing the Approximations 28: Applications 28.1 Solving Differential Equations 28.1.1 Homework 28.2 Some ODE Techniques 28.2.1 Variation of Parameters 28.2.2 Homework 28.2.3 Boundary Value Problems 28.3 Linear Partial Differential Equations 28.3.1 Determining the Separation Constant 28.3.2 Convergence Analysis for Fourier Series Revisited 28.3.3 Fourier Series Convergence Analysis 28.3.4 Homework 28.3.5 Convergence of the Cable Solution: Simplified Analysis 28.3.6 Homework 28.4 Power Series for ODE 28.4.1 Constant Coefficient ODEs 28.4.2 Homework 28.4.3 Polynomial Coefficient ODEs 28.4.4 Homework IV: Summing It All Up 29: Summary V: References VI: Detailed Index Index