دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2020
نویسندگان: Maria Kaparakis-Liaskos (editor). Thomas A. Kufer (editor)
سری:
ISBN (شابک) : 3030363309, 9783030363307
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 258
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Bacterial Membrane Vesicles: Biogenesis, Functions and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب وزیکول های غشایی باکتریایی: بیوژنز، عملکردها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Editors and Contributors Chapter 1: Introduction, History, and Discovery of Bacterial Membrane Vesicles 1.1 Introduction to Gram-Negative OMVs 1.1.1 The First Observations of OMVs 1.1.2 Advances in OMV Research 1.1.3 Outer Membrane Vesicles Research in the Last Decade 1.1.4 Biogenesis of OMVs 1.1.5 Outer Membrane Vesicles in Bacterial Communication 1.1.6 Outer Membrane Vesicles in Host-Pathogen Interactions 1.1.7 Distribution of OMVs in the Environment 1.2 Introduction to Gram-Positive MVs 1.2.1 Production and Biogenesis of Gram-Positive MVs 1.2.2 Contents of Gram-Positive MVs 1.2.3 Role of MVs in Inter-Bacterial Communication 1.2.4 Role of MVs in Host-Pathogen Interactions 1.3 Conclusions References Chapter 2: Biogenesis of Gram-Negative OMVs 2.1 Introduction 2.2 Modulation of Outer Membrane-Peptidoglycan Linkages 2.2.1 Braun´s Lipoprotein (Lpp) 2.2.2 Outer Membrane Protein A (OmpA) 2.2.3 Tol-Pal Complex 2.3 Bacterial Stress Responses Affecting Vesiculation 2.3.1 Envelope Stress Response 2.3.2 Cell Wall-Directed Agents 2.3.3 SOS Response and Bacteriophages 2.4 Filamentous or Tubular Surface Structures 2.5 Modulation of Outer Membrane Components or Composition 2.5.1 Pseudomonas Quinolone Signal (PQS) 2.5.2 LPS Modifications 2.5.2.1 Lipid A Modifications 2.5.2.2 LPS Core Modifications 2.5.2.3 O-Antigen Modifications 2.5.3 Modulation of Phospholipid Composition 2.6 Conclusion References Chapter 3: Biogenesis and Function of Extracellular Vesicles in Gram-Positive Bacteria, Mycobacteria, and Fungi 3.1 Introduction 3.2 Evidence for MVs in Cell-Walled Organisms 3.3 Methods for the Study of MVs in Organisms with a Thick Cell Wall 3.3.1 Methods of Isolation 3.3.2 Cargo Identification 3.3.2.1 Identification of MV-Associated Proteins 3.3.2.2 Identification of MV-Associated Lipids 3.3.2.3 Identification of MV-Associated Nucleic Acids 3.3.3 Quantification, Labeling, and Visualization of MVs 3.4 Mechanisms of MV Biogenesis in Cell-Walled Microorganisms 3.4.1 Fungi 3.4.2 Gram-Positive Bacteria and Mycobacteria 3.5 MV Cargo 3.5.1 Fungi 3.5.2 Gram-Positive Bacteria 3.5.3 Mycobacteria 3.6 Cell-Walled Organisms-Derived MV Functions 3.6.1 Fungi 3.6.2 Gram-Positive Bacteria 3.6.3 Mycobacteria 3.7 MVs in Medicine 3.7.1 Clinical Implications of MVs 3.7.2 MVs as Vaccine 3.7.3 MVs in Biofilm Production 3.7.4 MVs in Diagnosis 3.8 Unsolved Problems and Concluding Remarks 3.8.1 Cell Wall Transport 3.8.2 Mechanism of Vesicle Production and Sorting Contents 3.8.3 Role of Vesicles in Pathogenesis and Vaccines 3.9 Concluding Remarks References Chapter 4: Extracellular Vesicles in the Environment 4.1 Introduction 4.2 Formation and Contents of Membrane Vesicles 4.3 Variation Among Vesicles 4.4 Distribution of Vesicles in the Environment 4.4.1 Vesicles in Aquatic Systems 4.4.2 Vesicles in Surface-Associated Communities 4.4.3 What Modulates Vesicle Distributions in the Environment? 4.5 Vesicles as Discrete, Structured Packets of ``Dissolved´´ Nutrients 4.5.1 Vesicles Are an Investment of Cellular Resources 4.5.2 How Much ``Dissolved´´ Material in the Environment Is Enclosed Within Vesicles? 4.5.3 Vesicles as a Component of Global Dissolved Organic Carbon Pools 4.5.4 Vesicles as Reservoirs and Scavengers of Inorganic Nutrients 4.6 Ecological Roles of Vesicles 4.6.1 Manipulators of the Local Environment 4.6.2 Vectors of Intercellular Exchange and Signaling 4.6.3 Reservoirs of Genetic Information and Vectors of Horizontal Gene Transfer 4.6.4 Impacts on Cell-Surface Interactions 4.6.5 Defensive Roles and Vesicle-Virus Interactions 4.7 The Future of Vesicle Research: Challenges and Opportunities References Chapter 5: Functions of MVs in Inter-Bacterial Communication 5.1 Introduction 5.2 Pseudomonas Quinolone Signal 5.2.1 Multifunctional PQS 5.2.2 PQS Delivery Through MVs 5.2.3 Vesiculation Is Stimulated by PQS 5.3 N-Acyl Homoserine Lactone (AHL) Signals 5.3.1 Binary Signaling Involving MVs 5.3.2 Specific Signal Delivery Through MVs 5.3.3 Signal Piracy by MVs 5.4 cis-2-Unsaturated Fatty Acids Signaling 5.4.1 The Role of DSF Family Signals in MV Formation 5.5 CAI-1 Signaling 5.5.1 CAI-1 Delivery Through MVs 5.6 Types of MVs and Their Role in Cell-to-Cell Communication 5.7 Interkingdom Signals Carried by MVs 5.8 Concluding Remarks References Chapter 6: Membrane Vesicles from Plant Pathogenic Bacteria and Their Roles During Plant-Pathogen Interactions 6.1 Background 6.2 Characterization of the Molecular Cargo of Bacterial Plant Pathogens MVs 6.3 Functions of MVs During Plant Colonization 6.4 Bacterial MVs and the Plant Immune System 6.5 Future Prospects and Major Questions References Chapter 7: Delivery of Virulence Factors by Bacterial Membrane Vesicles to Mammalian Host Cells 7.1 Bacterial Membrane Vesicle-Mediated Protein Delivery 7.1.1 Escherichia coli 7.1.2 Vibrio cholerae 7.1.3 Pseudomonas aeruginosa 7.1.4 Acinetobacter baumannii 7.1.5 Porphyromonas gingivalis 7.2 OMV-Mediated Virulence Factor Delivery by Other Gram-Negative Bacteria 7.3 Delivery of Bacterial Nucleic Acids by OMVs 7.3.1 DNA 7.3.2 RNA 7.3.2.1 How Does RNA Associate with OMVs? 7.4 Bacterial Lipid Release in Association with OMVs 7.5 Small Molecule Delivery Via OMVs 7.6 Gram-Positive Bacteria Membrane Vesicles (MVs) 7.6.1 Staphylococcal Species 7.6.1.1 Staphylococcus aureus 7.6.1.2 Staphylococcus haemolyticus 7.6.2 Streptococcal Species 7.6.2.1 Streptococcus pyogenes 7.6.2.2 Streptococcus pneumoniae 7.6.3 Mycobacterial Species 7.6.4 Enterococcus faecium 7.6.5 Bacillus anthracis 7.6.6 Listeria monocytogenes 7.6.7 Lactobacillus 7.7 Entry and Trafficking of OMVs and MVs into Host Cells 7.8 Conclusions References Chapter 8: Immunodetection and Pathogenesis Mediated by Bacterial Membrane Vesicles 8.1 Bacterial Membrane Vesicles 8.1.1 Bacterial Membrane Vesicles Contain Immunogenic Cargo 8.2 Bacterial Membrane Vesicles Interact with and Modulate the Hosts Innate Immune System 8.2.1 OMVs Protect Bacteria Against Host Innate Immune Molecules 8.2.2 Recognition of Bacterial Membrane Vesicles by Host Pattern Recognition Receptors Results in a Pro-Inflammatory Response 8.2.2.1 Recognition of Bacteria by Toll-like Receptors 8.2.2.2 Recognition of Bacteria by Cytoplasmic Innate Immune Receptors 8.2.2.3 Bacterial Membrane Vesicles Are Detected by Host Pattern Recognition Receptors Resulting in the Induction of an Innate... 8.2.2.4 Gram-Negative OMVs Are Detected by PRRs Expressed by Epithelial Cells 8.2.2.5 Gram-Positive MVs Interact with Host Epithelial Cells 8.3 Bacterial Membrane Vesicles Adhere to, Fuse and Enter Host Cells to Mediate a Pro-Inflammatory Response 8.3.1 Lipid Raft-Dependent Entry of OMVs and MVs into Epithelial Cells 8.3.2 Lipid Raft-Independent Mechanisms of OMV Entry into Epithelial Cells 8.3.3 Detection and Degradation of Intracellular OMVs by Epithelial Cells 8.4 Bacterial Membrane Vesicles Are Cytotoxic and Disrupt the Epithelial Cell Barrier 8.4.1 OMVs Are Cytotoxic to Host Cells 8.4.2 MVs Are Cytotoxic to Host Cells 8.5 Bacterial Membrane Vesicles Interact with Host Innate Immune Cells 8.5.1 OMVs Interact with Macrophages 8.5.1.1 Anti-Inflammatory Effects of OMVs on Host Macrophages 8.5.2 OMVs and MVs Interact with Neutrophils 8.5.3 OMVs Induce DC Maturation 8.5.4 The Effects of Commensal OMVs on Innate Immune Cells 8.6 Interactions of OMVs with Endothelial Cells 8.7 Adaptive Immune Responses to Bacterial Membrane Vesicles 8.7.1 Bacterial Membrane Vesicles Shape Adaptive Immunity 8.7.2 Generation of OMV-Specific Protective Immune Responses 8.7.3 OMVs Can Modulate B Cell Responses 8.7.4 Gram-Positive MVs Mediate Adaptive Immune Responses 8.7.5 Development of OMVs and MVs for Use as Vaccines 8.8 Conclusions and Perspectives References Chapter 9: Membrane Vesicles from the Gut Microbiota and Their Interactions with the Host 9.1 Gut Microbiota 9.2 Role of Microbiota-Secreted Membrane Vesicles in Interspecies Communication in the Gut 9.2.1 Contribution of Gut Microbiota-Derived MVs to the Intestinal Ecosystem 9.2.2 Contribution of Gut Microbiota-Derived MVs to Inter-Kingdom Signaling 9.3 MVs in Microbiota-Host Interaction at the Intestinal Mucosa 9.3.1 Interaction with Intestinal Epithelial Cells 9.3.2 Interaction with Immune Cells 9.3.3 Immunomodulatory and Barrier Protective Effects in Animal Models of Human Diseases 9.4 Spreading of Microbiota MVs through the Body 9.5 Conclusions References Chapter 10: Bacterial Membrane Vesicles and Their Applications as Vaccines and in Biotechnology 10.1 Introduction 10.2 OMV Use in Vaccines 10.2.1 OMV Vaccines for Meningitis 10.2.2 OMV Vaccines for Gonorrhea 10.2.3 OMV Vaccines for Influenza 10.2.4 OMV Vaccines for Cholera 10.2.5 OMV and EV Vaccines for Other Diseases 10.2.6 OMV Vaccines Based on Recombinant Antigens 10.2.7 OMV Vaccines Based on Bacterial Glycans 10.2.8 OMV Vaccines for Host Glycans 10.3 OMV-Based Therapeutics 10.3.1 Emerging Therapeutic Applications 10.3.2 Commercial Application of EVs 10.3.3 OMVs for Biomass Conversion 10.3.4 OMVS for Bioremediation 10.3.5 OMVs for Imaging and Biosensing 10.3.6 Future Commercial Applications of Bacterial Membrane Vesicles 10.4 Conclusion References