دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: نویسندگان: Fernando Ferreira, Reinhard Kahle, Giovanni Sommaruga سری: ISBN (شابک) : 3030777987, 9783030777982 ناشر: Springer سال نشر: 2022 تعداد صفحات: 293 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Axiomatic Thinking II به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تفکر بدیهی II نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Acknowledgements Contents Overview of Vol. 1 Contents Editors and Contributors About the Editors Contributors Part I Logic I(2) 1 A Framework for Metamathematics 1.1 Hilbert\'s Program Revisited 1.2 Non-constructive Principles of Metamathematics 1.2.1 What We Need 1.2.2 What We Obtain 1.3 Conclusion References 2 Simplified Cut Elimination for Kripke-Platek Set Theory 2.1 Introduction 2.2 Kripke-Platek Set Theory 2.3 A Tait-Style Reformulation of KP 2.4 An Ordinal System for the Bachmann-Howard Ordinal 2.5 Derivation Operators 2.6 The Infinitary Proof System IP 2.7 Partial Soundness and Completeness of IP 2.8 Embedding of KPT into IP 2.9 Predicative Cut Elimination 2.10 Collapsing Theorem References 3 On the Performance of Axiom Systems 3.1 Introduction 3.2 Characteristic Ordinals 3.2.1 Semi-formal Systems 3.2.2 The Ordinals πmathfrakM and πmathfrakM(T) 3.2.3 Basics of Ordinal Arithmetic and Cut-Elimination 3.2.4 Boundedness 3.2.5 An Example 3.3 Analytical Universes Above mathfrakM 3.3.1 Spector Classes 3.3.2 Fixed-Point Theories 3.3.3 Collapsing 3.4 Ordinal Analysis for Arithmetical Universes 3.4.1 Upper Bounds 3.4.2 Lower Bounds 3.5 Provably Recursive Functions 3.6 Conclusion References 4 Well-Ordering Principles in Proof Theory and Reverse Mathematics 4.1 Introduction 4.1.1 Reverse Mathematics 4.2 History 4.2.1 2mathfrakX and Arithmetical Comprehension 4.2.2 ACA0+ and εmathfrakX 4.2.3 Proof Idea of (1)(2) of Theorem 4.11 4.3 Towards Impredicative Theories 4.3.1 The Bachmann Revelation 4.3.2 Associating a Dilator with Bachmann 4.4 Towards a General Theory of Ordinal Representations 4.4.1 Feferman\'s Relative Categoricity 4.4.2 Girard\'s Dilators 4.5 Higher Order Well-Ordering Principles 4.5.1 Bachmann Meets a Dilator 4.5.2 Deduction Chains in PAmathfrakX 4.5.3 A Glimpse of Anton Freund\'s Work 4.6 There Are Much Stronger Constructions Than Bachmann\'s References Part II Mathematics II(2) 5 Reflections on the Axiomatic Approach to Continuity References 6 Abstract Generality, Simplicity, Forgetting, and Discovery 6.1 An Articulating Generalization: Riemannian Manifolds 6.2 A Hypothetical Example of a Unifying Generalization 6.3 Generalization at the Origin of Abstract Algebra 6.4 Forgetting the Details, for a Time 6.5 Schemes References 7 Varieties of Infiniteness in the Existence of Infinitely Many Primes 7.1 Introduction 7.2 The Axiom System and Some Basic Facts for the First Proof 7.3 Proof of the Infinity of Primes Based on the Co-Primeness of the Fermat Numbers 7.4 Euclid\'s Proof for the Cofinality of Primes 7.5 Comparing Notions of Infinity References 8 Axiomatics as a Functional Strategy for Complex Proofs: The Case of Riemann Hypothesis 8.1 Axiomatics, Analogies, Conceptual Structures 8.2 Navigating Within the Mathematical Hymalayan Chain 8.3 Riemann\'s ζ-Function 8.3.1 The Distribution of Primes 8.3.2 Definitions of ζ(s) 8.3.3 Mellin Transform, Theta Function, and Functional Equation 8.3.4 Zeroes of ζ(s) 8.3.5 Riemann Hypothesis 8.3.6 The Problem of Localizing Zeroes 8.4 Explicit Formulas 8.4.1 Riemann\'s Explicit Formula 8.5 Local/Global in Arithmetics 8.5.1 Dedekind-Weber Analogy 8.5.2 Weil\'s Description of Dedekind-Weber Analogy 8.5.3 Valuations and Ultrametrics 8.5.4 p-Adic Numbers 8.5.5 Hensel\'s Geometric Analogy 8.5.6 Places 8.5.7 Local and Global Fields 8.6 The RH for Elliptic Curves Over mathbbFq (Hasse) 8.6.1 The ``Rosetta Stone\'\' 8.6.2 The Hasse-Weil Function 8.6.3 Divisors and Classical Riemann-Roch (Curves) 8.6.4 Divisors and Classical Riemann-Roch (Surfaces) 8.6.5 RR for Curves Over mathbbFq 8.6.6 The Frobenius Morphism 8.6.7 RH for Elliptic Curves (Schmidt and Hasse) 8.7 Weil\'s ``Conceptual\'\' Proof of RH 8.8 Connes\' Strategy: ``A Universal Object for the Localization of L Functions\'\' 8.8.1 Come Back to Arithmetics 8.8.2 The Hasse-Weil Function in Characteristic 1: Soulé\'s Work 8.8.3 Semi-rings and Semi-fields of Characteristic 1 8.8.4 The Arithmetic Topos mathfrakA=( mathbbNtimes\"0362mathbbNtimes,mathbbZmax) 8.9 Conclusion References Part III Other Sciences III(2) 9 What is the Church-Turing Thesis? 9.1 Introduction 9.2 What Is Computed? 9.3 How Is It Computed? 9.4 What Can Be Proved? 9.4.1 Against Provability 9.4.2 In Favour of Provability 9.4.3 What Does It Mean to Disprove the Thesis? 9.5 The Mathematical Thesis 9.5.1 Non-empirical Arguments in Favour of the Thesis 9.5.2 Disproving the Thesis 9.6 The Physical Thesis 9.6.1 Proving the Thesis 9.6.2 Disproving the Thesis 9.7 Conclusion References 10 Axiomatic Thinking in Physics—Essence or Useless Ornament? 10.1 Prologue 10.2 Introduction 10.3 Some Examples 10.3.1 Isaac Newton and Mechanics 10.3.2 Heinrich Hertz and Modern Analytical Mechanics 10.3.3 Constantin Carathéodory and Classical Thermodynamics 10.3.4 Max Born and the ``Old\'\' Quantum Mechanics 10.3.5 Werner Heisenberg and Quantum Field Theory 10.4 Space-Time 10.4.1 Minkowski Space 10.4.2 General Relativity 10.5 Conclusions and Summary References 11 Axiomatic Thinking—Applied to Religion 11.1 On the Possibility of Applying Axiomatic Thinking to Religion 11.1.1 Applying Logic to Religion 11.1.2 Religious Discourse 11.1.3 Religious Texts. Example: The Bible of the Christian Religion 11.1.4 The Two Kinds of Belief 11.2 Applying Axiomatic Thinking to Religion: Logical Language 11.2.1 Logic 11.2.2 Set-Theoretic Elementhood: ε 11.2.3 Operators 11.2.4 Individual Constant 11.2.5 Quantifiers 11.2.6 Modal Operators 11.2.7 Interpretation 11.3 Applying Axiomatic Thinking to Religion: Omniscience and Omnipotence 11.3.1 Omniscience 11.3.2 Problems Concerning Theorem T6: Necessary Knowledge 11.3.3 Omnipotence References