دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3 نویسندگان: Bernd Kaspers (editor), Karel A. Schat (editor), Thomas Göbel (editor), Lonneke Vervelde (editor) سری: ISBN (شابک) : 0128187085, 9780128187081 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 626 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 42 مگابایت
در صورت تبدیل فایل کتاب Avian Immunology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ایمونولوژی پرندگان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title-page_2022_Avian-Immunology Avian Immunology Copyright_2022_Avian-Immunology Copyright Dedication_2022_Avian-Immunology Dedication Contents_2022_Avian-Immunology Contents List-of-contributors_2022_Avian-Immunology List of contributors Foreword_2022_Avian-Immunology Foreword Acknowledgments_2022_Avian-Immunology Acknowledgments Appendix-1---Genetic-stocks-for-immunological-research_2022_Avian-Immunology Appendix 1 Genetic stocks for immunological research A.1 Introduction A.2 Major histocompatibility complex lines A.2.1 Inbred lines A.2.2 Congenic lines A.2.3 Randombred lines A.2.4 Selected lines A.3 General lines A.4 Genetically modified lines Acknowledgments References Chapter-1---The-importance-of-the-avian-immune-system-and-_2022_Avian-Immuno 1 The importance of the avian immune system and its unique features 1.1 Introduction 1.2 The contribution from avian lymphocytes 1.3 Contribution of the bursa of Fabricius 1.3.1 Gene conversion and the bursa 1.4 The contribution of the chicken MHC 1.5 Contributions to vaccinology 1.5.1 Embryonic (in ovo) vaccination 1.6 Conclusion References Chapter-2---Structure-of-the-avian-lymphoid-system_2022_Avian-Immunology 2 Structure of the avian lymphoid system 2.1 Introduction 2.2 The thymus 2.2.1 Anatomy and histological organization 2.2.2 Thymic cortex 2.2.3 Thymic medulla Thymic corticomedullary border 2.3 The bursa of Fabricius 2.3.1 Anatomy and histology 2.3.2 Bursal surface epithelium 2.3.3 Bursal follicle 2.3.4 Medulla 2.3.5 Bursal medullary epithelial cells 2.3.6 Bursal secretory dendritic cells 2.3.7 Bursal macrophages 2.3.8 Bursal lymphocytes 2.3.9 Cortex 2.3.10 Peripheral lymphoid tissue of the bursa of Fabricius 2.3.11 Germinal center of the peripheral lymphoid organs 2.4 The spleen 2.4.1 Origin and anatomy Red pulp White pulp 2.4.2 Periarteriolar lymphoid sheath 2.4.3 Ellipsoids and periellipsoid white pulp 2.4.4 The marginal-zone equivalent and antigen handling 2.5 Gut-associated lymphoid tissue 2.5.1 Follicle-associated epithelium or lymphoepithelium 2.5.2 Esophageal and pyloric tonsils 2.5.3 Peyer’s patches 2.5.4 Meckel’s diverticulum 2.5.5 Cecal tonsils 2.6 Harderian gland 2.7 Mural lymph node 2.8 Ectopic lymphatic tissue and pineal gland 2.9 Bone marrow 2.10 Blood References Chapter-3---Development-of-the-avian-hematopoietic-and-im_2022_Avian-Immunol 3 Development of the avian hematopoietic and immune systems 3.1 Introduction 3.2 Origins and migration routes of hematopoietic cells using quail/chicken complementary chimeras 3.2.1 Looking for the source of hematopoeietic cells during development 3.2.2 Macrophage production by the yolk sac 3.2.3 The aortic region produces HSCs 3.3 Aortic clusters as the intraembryonic source of definitive hematopoiesis 3.3.1 Cellular and molecular identification of the clusters 3.3.2 The paraaortic foci 3.3.3 Tracing the origins and fates of the aortic clusters 3.4 Formation of the aorta: a dorsal angioblastic lineage and a ventral hemangioblasts lineage 3.4.1 Two endothelial lineages form the vascular network of the embryo 3.4.2 Chimeric origin of the aortic endothelial cells 3.5 Developing an in vitro model of hemogenic endothelium commitment and endothelial-to-hematopoietic transition 3.6 Spatiotemporal emergence and organization of the chicken IAHCs 3.7 Ecs of the late fetus/young adult bone marrow harbor hemogenic potential and generate multilineage hematopoiesis 3.8 Spatial transcriptomics in the chicken embryo reveals regulators of hematopoiesis 3.9 The avian thymus and T-cell development 3.9.1 Thymic development 3.9.2 Colonization of the thymus 3.9.3 T-cell differentiation 3.9.4 TCR rearrangement 3.10 The bursa of Fabricius, B-cell ontogeny, and immunoglobulins 3.10.1 Bursal development 3.10.2 Formation of the bursal epithelial anlage 3.10.3 Hematopoietic colonization of the bursal rudiment and follicle bud formation 3.10.4 Development of the follicle-associated epithelium and the follicular cortex 3.10.5 Immunoglobulins 3.11 Lymphocyte-differentiating hormones 3.12 Development of the immune responses 3.12.1 Early immune responses 3.12.2 Antibody isotype switching and hypersensitivity reaction 3.12.3 Allograft rejection 3.13 Conclusion Acknowledgments References Chapter-4---B-cells--the-bursa-of-Fabricius--and-the-generat_2022_Avian-Immu 4 B cells, the bursa of Fabricius, and the generation of antibody repertoires 4.1 Introduction 4.2 The generation of avian antibody repertoires 4.2.1 Immunoglobulin light chains 4.2.2 Immunoglobulin heavy chains 4.2.3 Generation of Ig molecules by V(D)J recombination 4.2.4 Generation of Ig diversity by somatic gene conversion 4.2.5 Implications of gene conversion for allelic exclusion 4.3 The development of avian B cells 4.3.1 Prebursal B cell development 4.3.2 Colonization of the bursa by B cell progenitors 4.3.3 Colonization of lymphoid follicles in the bursa 4.3.4 Growth of bursal B cells in bursal follicles 4.3.5 Development of the bursa after hatch 4.3.6 Role of cell adhesion molecules and chemokines in bursal cell development 4.3.7 Development of peripheral B cell populations 4.3.8 Activation of peripheral B cells 4.3.9 Plasma cell development 4.3.10 Cytokines in chicken B cell development and activation 4.3.11 Application of B cell cultures References Chapter-5---Structure-and-evolution-of-avian-immunoglobu_2022_Avian-Immunolo 5 Structure and evolution of avian immunoglobulins 5.1 The basic structure of immunoglobulins 5.2 Avian immunoglobulins 5.2.1 Avian IgM 5.2.2 Avian IgY (IgG) 5.2.3 Avian IgA 5.2.4 Avian homologues of IgD and IgE 5.2.5 L chains 5.2.6 Genomic organization of the IgH and IgL locus Avian Ig allotypes 5.3 Ig half-life 5.4 Natural antibodies 5.5 Maternal antibodies 5.6 Fc receptors 5.6.1 Chicken polymeric Ig receptor 5.6.2 Chicken FcRn homologue 5.6.3 Chicken Fc receptor cluster 5.6.4 ggFcR 5.6.5 CHIR-AB1 5.7 Avian antibody responses 5.8 The chicken egg as a source of antibodies 5.8.1 Avian antibodies as tools for research References Chapter-6---Avian-T-cells--Antigen-Recognition-and-Linea_2022_Avian-Immunolo 6 Avian T cells: Antigen Recognition and Lineages 6.1 Introduction 6.2 T cell receptor structure and lineages 6.2.1 Somatic DNA recombination 6.2.2 Organization of the T cell receptor clusters TCRα/δ cluster TCRβ cluster TCRγ cluster The genomic T cell receptor regions in other birds 6.3 CD3 signaling complex 6.3.1 Mammalian CD3 6.3.2 Chicken CD3γ/δ and CD3ε 6.3.3 ζζ homodimer 6.3.4 T cell receptor complex—structural models 6.3.5 T cell receptor signal transduction 6.4 CD4 and CD8 6.5 Costimulatory molecules 6.6 T cell lineages 6.7 Methods to study T cell function 6.8 Perspectives References Chapter-7---The-avian-major-histocompatibility-complex_2022_Avian-Immunology 7 The avian major histocompatibility complex 7.1 Introduction 7.2 The biology of the major histocompatibility complex 7.3 The major histocompatibility complex: a genomic region or a biological unit? 7.4 The chicken major histocompatibility complex and the major histocompatibility complex syntenic region 7.5 Classical and nonclassical major histocompatibility complex molecules 7.6 Chicken classical major histocompatibility complex molecules 7.7 Gene coevolution in the chicken major histocompatibility complex 7.8 Other chicken genes important for the major histocompatibility complex 7.9 Polymorphism and typing chicken major histocompatibility complex genes 7.10 Avian major histocompatibility complexes 7.11 Immunity, disease resistance, and the major histocompatibility complex in wild birds 7.12 Sexual selection and the major histocompatibility complex in wild birds 7.13 Origin and evolution of the immune system Acknowledgments References Chapter-8---Introduction-to-the-avian-innate-immune-system--pro_2022_Avian-I 8 Introduction to the avian innate immune system; properties, effects, and integration with other parts of the immune system Chapter-8-1---Macrophages-and-dendritic-cells_2022_Avian-Immunology 8.1 Macrophages and dendritic cells 8.1.1 Introduction 8.1.1.1 Antigen presentation 8.1.1.2 Dendritic cells 8.1.1.3 Macrophages 8.1.1.4 Development of myeloid cells 8.1.1.5 Sources of avian macrophages and dendritic cells 8.1.1.6 Avian myeloid cell lines 8.1.1.7 Cell surface markers for avian myeloid cells 8.1.1.8 Characterization of macrophages and DC in tissue sections 8.1.1.9 Functional properties of chicken macrophages 8.1.1.10 Macrophage migration 8.1.1.11 Phagocytosis 8.1.1.12 Respiratory burst activity 8.1.1.13 Nitric oxide production: a readout system for avian macrophage activation 8.1.1.14 Cytokine response of avian macrophages 8.1.2 Functional properties of chicken antigen-presenting cells 8.1.2.1 Maturation from antigen sampling to antigen presenting 8.1.2.2 Migration 8.1.2.3 Other nonmyeloid antigen-presenting cells 8.1.3 Concluding remarks References Subchapter-8-2---Avian-granulocytes_2022_Avian-Immunology Subchapter 8.2 Avian granulocytes 8.2.1 Functional activities of heterophils 8.2.2 Receptors 8.2.3 Other innate immune receptors 8.2.4 Genetic effects on heterophil genotype and phenotype 8.2.5 Heterophil isolation References Further reading Chapter-8-3---Thrombocyte-functions-in-the-avian-immune-_2022_Avian-Immunolo 8.3 Thrombocyte functions in the avian immune system 8.3.1 Introduction 8.3.2 Avian thrombocyte structure 8.3.2.1 Physical characteristics 8.3.2.2 Surface protein expression 8.3.3 Avian thrombocytes and immune responses 8.3.3.1 Innate responses 8.3.3.2 Adaptive immune responses 8.3.4 Infection of thrombocytes 8.3.5 Conclusion References Chapter-8-4---Natural-killer-cells_2022_Avian-Immunology 8.4 Natural killer cells 8.4.1 Potential natural killer cell receptor families 8.4.2 Phenotype of chicken natural killer cells 8.4.3 Natural killer cell function References Chapter-8-5---Soluble-components-and-acute-phase-protei_2022_Avian-Immunolog 8.5 Soluble components and acute-phase proteins 8.5.1 Soluble components 8.5.1.1 Host defense peptides 8.5.1.2 Collagenous lectins 8.5.1.3 Surfactant protein A and cLL 8.5.1.4 Mannose-binding lectin 8.5.1.5 Collectin 10, -11, and -12 8.5.1.6 Complement 8.5.1.7 Components of the classical pathway 8.5.1.8 Components of the lectin pathway 8.5.1.9 Components of the alternative pathway 8.5.1.10 Downstream components of complement 8.5.2 The acute-phase response 8.5.2.1 C-reactive protein 8.5.2.2 Serum amyloid A 8.5.2.3 α1-acid glycoprotein 8.5.2.4 (Ovo)transferrin 8.5.2.5 PIT54 8.5.2.6 Hemopexin 8.5.2.7 Ceruloplasmin 8.5.2.8 Fibrinogen 8.5.2.9 Other potential chicken APPs References Chapter-8-6---Pattern-recognition-receptors_2022_Avian-Immunology 8.6 Pattern recognition receptors 8.6.1 Introduction 8.6.2 Tissue fluid and secreted pattern recognition receptors 8.6.2.1 C-reactive protein 8.6.2.2 Collectins 8.6.2.3 Mannose-binding lectin 8.6.2.4 Ficolins 8.6.2.5 Surfactants: surfactant protein A and surfactant protein D 8.6.2.6 Other collectins 8.6.2.7 Chicken mannose (or mannan)-binding lectin-associated serine protease proteins, linking soluble pattern recognition... 8.6.3 Cell-associated pattern recognition receptors 8.6.3.1 Avian Toll-like receptors Background The avian Toll-like receptor repertoire 8.6.3.2 TLR1/6/10-related molecules 8.6.3.3 TLR2 8.6.3.4 TLR3 8.6.3.5 TLR4 8.6.3.6 TLR5 8.6.3.7 TLR7 and TLR8 8.6.3.8 The absence of TLR9 8.6.3.9 Avian Toll-like receptor without mammalian orthologues: chTLR15 and chTLR21 8.6.3.10 Toll-like receptor signaling pathways in chickens 8.6.3.11 Genetic diversity and evidence of selection in avian Toll-like receptors 8.6.3.12 Other transmembrane pattern recognition receptor 8.6.4 Cytosolic pattern recognition receptor 8.6.4.1 Nucleotide-binding oligomerization domain-like receptors 8.6.4.2 Retinoic acid-inducible gene-like receptors 8.6.5 Closing comments: general considerations in pattern recognition Acknowledgments References Chapter-9---Avian-cytokines-and-their-receptors_2022_Avian-Immunology 9 Avian cytokines and their receptors 9.1 Introduction 9.2 Avian cytokine and chemokine families 9.3 The interleukins 9.3.1 The interleukin-1 family 9.3.2 T-cell proliferative interleukins 9.3.3 T-helper interleukins 9.3.4 Th1 interleukins 9.3.5 Th2 interleukins 9.3.6 Th1–Th2 paradigm 9.3.7 Other Th subsets Th9 cells Th17 cells Th22 cells Follicular T-helper cells Regulatory T cells 9.4 Other interleukins 9.4.1 The interleukin-10 family 9.4.2 The interleukin-6 family 9.4.3 Other interleukins 9.5 The interferons 9.5.1 Type I interferon 9.5.2 Type II interferon 9.5.3 Type III interferon 9.6 Other factors 9.6.1 The transforming growth factor-β family 9.6.2 The tumor necrosis factor superfamily 9.6.3 Colony-stimulating factors 9.6.4 Cytokines and factors in other birds 9.7 Chemokines 9.7.1 XC and CX3C chemokines 9.7.2 CC Chemokines 9.7.3 CXC chemokines 9.8 Cytokine and chemokine receptors 9.8.1 Type I receptors 9.8.2 Type II receptors 9.8.3 Transforming growth factor-β family receptors 9.8.4 Tumor necrosis factor superfamily receptors 9.8.5 Chemokine receptors 9.8.6 Interleukin-1 family receptors 9.9 The importance of regulation of cytokine responses 9.10 Therapeutic potential of chicken cytokines 9.10.1 Alternatives to antibiotic growth promoters 9.10.2 Potential use of cytokines as vaccine adjuvants 9.11 Conclusion References Chapter-10---Immunogenetics-and-the-mapping-of-immunologi_2022_Avian-Immunol 10 Immunogenetics and the mapping of immunological functions 10.1 Introduction 10.2 Genetics and immunological traits in the chicken 10.3 Key gene loci for immunological traits 10.4 Detecting quantitative trait loci 10.4.1 Linkage disequilibrium 10.4.2 Experimental designs to detect quantitative trait loci Line or breed crosses Within-family linkage disequilibrium in outbred populations Population-wide linkage disequilibrium in outbred populations 10.5 Statistical procedures for quantitative trait loci detection 10.6 Strategies to use molecular data in genetic selection 10.6.1 Marker-assisted selection 10.6.2 Whole-genome prediction 10.7 Systems biology 10.8 Transgenic animals 10.9 Future directions for systems biology in avian immunology Acknowledgments References Chapter-11---The-mucosal-immune-system_2022_Avian-Immunology 11 The mucosal immune system References Chapter-11-1---The-avian-enteric-immune-system-in-health-_2022_Avian-Immunol 11.1 The avian enteric immune system in health and disease 11.1.1 General considerations 11.1.2 Gut structure and immune compartments 11.1.2.1 Chicken gut-associated lymphoid tissue structures 11.1.2.2 Cellular composition of the avian gut-associated lymphoid tissues 11.1.2.3 The enterocyte as part of an integrated gut immune system 11.1.3 Development of the enteric immune system 11.1.3.1 Development of immune responses to model antigens 11.1.3.2 Immunity to enteric pathogens 11.1.3.3 Development of immunity to enteric pathogens 11.1.3.4 Maternal antibody and protection of the young chick 11.1.4 Viral infections of the gut 11.1.5 Bacterial infections of the gut 11.1.5.1 Salmonella 11.1.5.2 Campylobacter 11.1.5.3 Necrotic enteritis 11.1.6 Parasitic infections of the gut 11.1.6.1 Eimeria spp 11.1.6.2 Other parasitic infections 11.1.7 Concluding remarks Acknowledgments References Chapter-11-2---The-avian-respiratory-immune-system_2022_Avian-Immunology 11.2 The avian respiratory immune system 11.2.1 Introduction 11.2.2 Anatomy of the respiratory tract 11.2.3 The paraocular lymphoid tissue 11.2.4 Nasal-associated lymphoid tissue 11.2.5 The contribution of the trachea to respiratory tract immune responses 11.2.6 The bronchus-associated lymphoid tissue 11.2.7 The immune system in the parabronchi 11.2.8 The phagocytic system of the respiratory tract 11.2.9 Handling of particles in the respiratory tract 11.2.10 The secretory IgA system in the respiratory tract 11.2.11 Gene expression analysis as a tool to investigate host–pathogen interaction References Subchapter-11-3---The-avian-reproductive-immune-system_2022_Avian-Immunology Subchapter 11.3 The avian reproductive immune system 11.3.1 Introduction 11.3.2 The structure and function of the avian reproductive tract 11.3.3 Structure and development of the reproductive tract-associated immune system in the chicken 11.3.3.1 Organization of lymphocytes in the reproductive tract 11.3.3.2 Distribution of macrophages and other cells 11.3.4 Local and systemic changes to the immune system at the onset of sexual maturity in hens 11.3.5 The innate immune system and the reproductive tract 11.3.6 The reproductive tract immune system in infection 11.3.6.1 Bacterial infections of the reproductive tract 11.3.6.2 The immune response to Salmonella infection of the reproductive tract 11.3.6.2.1 Viral infections of the reproductive tract 11.3.6.3 Responses to vaccination in the reproductive tract 11.3.6.4 The chicken as a model-understanding immunity in ovarian cancer 11.3.6.5 What do we need to know—directions for future research? 11.3.6.6 What are the functions and phenotypes of the cells in the reproductive tract? 11.3.6.7 How does the immune tissue of the reproductive tract integrate with the rest of the immune system? References Chapter-12---Impact-of-the-gut-microbiota-on-the-immune-_2022_Avian-Immunolo 12 Impact of the gut microbiota on the immune system 12.1 Introduction to the microbiota and avian immune system 12.2 Microbiota, metagenome, and microbiome 12.3 GI tract and immune system of poultry 12.3.1 Intestinal barrier system 12.4 Influence of the microbiota in immunity 12.4.1 Germ-free chickens 12.4.2 Antibiotic-treated chickens 12.4.3 Fecal microbial transplants 12.4.4 Layer-type chickens versus broiler chickens 12.5 Gut microbiota–immune system communication 12.5.1 Components of the microbiota 12.5.2 Microbial metabolites 12.5.3 Microbial epigenetic modifications 12.6 Gut microbiota: immune homeostasis 12.7 Gut microbiota: immune dysfunction: dysbiosis and inflammation 12.8 Managing the microbiome for immune modulation References Chapter-13---Innate-defenses-of-the-avian-egg_2022_Avian-Immunology 13 Innate defenses of the avian egg 13.1 Introduction 13.2 Egg basic structures and their role in innate defense 13.2.1 Physicochemical barriers The eggshell Egg white Perivitelline layer (vitelline membrane) Yolk 13.2.2 Antimicrobial molecules 13.3 Modification of egg structures during embryonic development 13.4 Embryonic immunity 13.4.1 Toll-like receptors 13.4.2 Macrophages 13.4.3 Heterophils 13.4.4 Dendritic cells 13.4.5 T lymphocytes 13.4.6 Natural Killer cells 13.4.7 Cytokines and chemokines 13.5 Extraembryonic structures and innate immunity 13.5.1 Amniotic sac 13.5.2 Yolk sac 13.5.3 The allantoic sac Morphology and structure of the chorioallantoic membrane Composition and function of the allantoic fluid 13.6 Concluding remarks References Chapter-14---Avian-immunosuppressive-diseases-and-immune-_2022_Avian-Immunol 14 Avian immunosuppressive diseases and immune evasion 14.1 Introduction 14.2 Immunosuppression 14.2.1 Introduction 14.2.2 Stress-induced immunosuppression 14.2.3 Mycotoxin-induced immunosuppression 14.2.4 Coccidia-induced immunosuppression 14.2.5 Virus-induced immunosuppression Infectious bursal disease virus Chicken infectious anemia virus Reovirus Adenovirus Tumor viruses Marek’s disease virus Avian leukosis virus and reticuloendotheliosis virus 14.3 Mechanisms of immunosuppression 14.3.1 Corticosteroids and stress-induced immunosuppression 14.3.2 Apoptosis, necroptosis, and pyroptosis 14.3.3 Virus-induced changes in the regulation of immune responses 14.4 Immunoevasion 14.4.1 Introduction 14.4.2 Immunoevasion by viral proteases 14.4.3 Immunoevasion mechanisms of avian coronaviruses 14.4.4 Immunoevasion mechanisms of the avian herpesviruses 14.4.5 Immunoevasion mechanism of the avian poxviruses 14.4.6 Immunoevasion mechanism of the avian orthomyxoviruses 14.4.7 Immunoevasion mechanism of the avian paramyxoviruses 14.4.8 Immunoevasion mechanism of the avian reoviruses 14.4.9 Immunoevasion mechanism of the avian birnaviruses 14.5 Conclusions References Chapter-15---Factors-modulating-the-avian-immune-system_2022_Avian-Immunolog 15 Factors modulating the avian immune system 15.1 Endocrine regulation of immunity 15.1.1 Stress hormones: epinephrine, norepinephrine, dopamine, and glucosteroids 15.1.2 Sex hormones Androgens Estrogen 15.1.3 Metabolic hormones: thyroid hormone, growth hormone, and leptin 15.1.4 Environmentally responsive hormones: melatonin 15.2 Physiological states 15.2.1 Temperature and housing as immune modulators Temperature Housing 15.3 Dietary effects on immunity 15.3.1 Contribution of the microbiome 15.3.2 Immunomodulatory nutrients and feed additives Amino acids Microminerals 15.3.3 Immunometabolism 15.4 Assessment of immunocompetence 15.4.1 Functional activity of the immune response Ex vivo measures In vivo measures References Chapter-16---Autoimmune-diseases-of-poultry_2022_Avian-Immunology 16 Autoimmune diseases of poultry 16.1 General characteristics of autoimmune diseases 16.2 Autoimmune vitiligo in Smyth-line chickens 16.2.1 Introduction 16.2.2 The Smyth line chicken model for autoimmune vitiligo 16.2.3 Characteristics of the Smyth-line chicken 16.2.4 Pigmentation and normal melanocyte function 16.2.5 Target cell defects 16.2.6 Immunological mechanisms Humoral immunity Cell-mediated immunity 16.2.7 Environmental factors 16.2.8 Summary 16.3 Spontaneous autoimmune (Hashimoto’s) thyroiditis in obese-strain chickens 16.3.1 Introduction 16.3.2 Development and characteristics of OS chickens 16.3.3 Immunological mechanisms 16.3.4 Target cell/organ defects 16.3.5 Summary 16.4 Scleroderma in UCD 200/206 chickens 16.4.1 Introduction 16.4.2 Development and characteristics of the UCD 200/206 lines 16.4.3 Immunological mechanisms 16.4.4 Summary Acknowledgments References Chapter-17---Tumors-of-the-avian-immune-system_2022_Avian-Immunology 17 Tumors of the avian immune system 17.1 Introduction 17.2 Tumors of the immune system 17.2.1 Marek’s disease 17.2.2 Avian leukosis 17.2.3 Reticuloendotheliosis 17.3 Oncogenic mechanisms of tumor viruses 17.3.1 Oncogenic mechanisms of retroviruses 17.3.2 Oncogenic mechanisms of DNA tumor viruses 17.4 Immune responses to oncogenic viruses 17.4.1 Immune responses to leukosis/sarcoma viruses 17.4.2 Immune responses to reticuloendotheliosis virus 17.4.3 Immune responses to Marek’s disease virus 17.5 Antitumor responses 17.6 Conclusion References Chapter-18---Practical-aspects-of-poultry-vaccination_2022_Avian-Immunology 18 Practical aspects of poultry vaccination 18.1 Introduction 18.2 Vaccine types 18.2.1 Live vaccines Attenuated live vaccines Immune-complex vaccines Genetically modified organisms 18.2.2 Inactivated vaccines 18.2.3 Poultry vaccine adjuvants 18.3 Vaccine application 18.3.1 Mass application Spray vaccination Drinking water vaccination 18.3.2 Individual applications Eye-drop or intranasal vaccination Subcutaneous and intramuscular injection Wing-web inoculation In ovo vaccination 18.4 Factors influencing vaccine responses 18.4.1 Status of the immune system at the time of vaccination 18.4.2 Maternally derived antibodies 18.4.3 Vaccine storage, preparation, and administration 18.4.4 Age at vaccination 18.4.5 Duration of immunity 18.4.6 Interference between vaccines 18.4.7 Time intervals between vaccinations 18.5 Immunosuppression 18.5.1 Stress and immunosuppression 18.5.2 Mycotoxins 18.5.3 Immunosuppression by vaccines 18.5.4 Influence of immunosuppression on vaccination 18.6 Quality control of response to vaccination 18.6.1 Serology 18.6.2 PCR/culture Acknowledgments References Chapter-19---Comparative-immunology-of-agricultural-bir_2022_Avian-Immunolog 19 Comparative immunology of agricultural birds 19.1 Introduction 19.2 Innate immunity 19.2.1 Toll-like receptors 19.2.2 Retinoic acid induced gene-I (R)-like receptors 19.2.3 Antimicrobial peptides 19.3 Cytokines 19.3.1 Interferons Type-I interferon Type-II interferon Type III interferons 19.3.2 Interleukins Interleukin-1 Interleukin-2 Interleukin-6 Interleukin-8 Interleukin-10 Interleukin-12 Interleukin-15 Interleukin-16 Interleukin-17 Interleukin-18 19.3.3 Tumor necrosis factor family 19.3.4 Th2 cytokines 19.4 Chemokines 19.4.1 CXC chemokines 19.4.2 CC chemokines 19.5 CCR7 19.6 Cell surface antigens 19.6.1 Anti-chicken monoclonal antibodies cross-reacting with turkey, quail, and duck leukocytes 19.6.2 Evidence for T and B cell populations in ducks 19.6.3 Antigens expressed on duck lymphocyte subsets CD4 and CD8 antigen The CD3/TCR complex The CD28 antigen and CTLA-4 and their ligands CD80 and CD86 19.6.4 C-type lectin immune receptors 19.6.5 Surface immunoglobulin 19.6.6 Major histocompatibility complex 19.7 Secreted antibodies 19.8 Cell lines Acknowledgments References Chapter-20---Evolutionary-and-ecological-immunology_2022_Avian-Immunology 20 Evolutionary and ecological immunology 20.1 Introduction 20.2 Assessing immune function in free-living birds 20.2.1 Single-time-point assays 20.2.2 Multiple-time-point assays 20.3 Development of the immune system in free-living birds 20.3.1 Ontogeny 20.3.2 Parental transmission of antibodies 20.4 Factors causing variation in immune responses 20.4.1 Age-related variation 20.4.2 Social environment 20.4.3 Condition, nutrition and individual quality 20.4.4 Seasonality/annual cycles 20.4.5 Parasite exposure 20.4.6 Other factors with immunomodulating effects 20.5 Molecular variation and evolution in immune genes 20.5.1 The major histocompatibility complex 20.5.2 Innate immune genes 20.6 Immune function as an evolving life history trait 20.6.1 Costs of mounting immune responses 20.6.2 Parasite-mediated natural selection and immune function 20.6.3 Links with male secondary characters 20.7 Priorities for future research Acknowledgment References Chapter-21---Advances-in-genetic-engineering-of-the-avian_2022_Avian-Immunol 21 Advances in genetic engineering of the avian genome 21.1 Methods to manipulate the avian genome 21.1.1 Viral vectors 21.1.2 Transposons 21.1.3 Direct in vivo transfection 21.1.4 Sperm transfection-assisted gene editing 21.1.5 Primordial germ cells 21.2 Genetically modified chickens 21.2.1 Chicken models for immunological research 21.2.2 Disease-resistant chickens 21.2.3 Genetically engineered chickens for basic research and agriculture 21.3 Genetically modified quails References Index_2022_Avian-Immunology Index Backcover Abbreviations_2022_Avian-Immunology Abbreviations