دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Xu Wang (editor)
سری:
ISBN (شابک) : 0128184094, 9780128184097
ناشر: Butterworth-Heinemann
سال نشر: 2020
تعداد صفحات: 391
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 39 مگابایت
در صورت تبدیل فایل کتاب Automotive Tire Noise and Vibrations: Analysis, Measurement and Simulation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سر و صدا و لرزش تایر خودرو: تجزیه و تحلیل ، اندازه گیری و شبیه سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نویز و ارتعاش تایر خودرو: تجزیه و تحلیل، اندازهگیری و شبیهسازی جدیدترین مکانیسمهای نسل تایر/صدای جاده را ارائه میدهد. این کتاب نه تنها بر روی مسائل مربوط به نویز لاستیک / جاده از ساختارهای تایر / جاده، مواد و دینامیک، بلکه از کل سیستم خودرو نیز تمرکز دارد. تحلیلها مدلسازی اجزای محدود، شبیهسازیهای ریاضی و آزمایشهای تجربی، از جمله کارهای انجامشده برای کاهش نویز را پوشش میدهند. این کتاب خلاصهای از تحقیقات نویز و ارتعاش تایر را با تمرکز بر تکنیکهای جدید شبیهسازی و اندازهگیری ارائه میکند.
Automotive Tire Noise and Vibrations: Analysis, Measurement and Simulation presents the latest generation mechanisms of tire/road noise. The book focuses not only on tire/road noise issues from the tire/road structures, materials and dynamics, but also from a whole vehicle system. The analyses cover finite element modeling, mathematical simulations and experimental tests, including works done to mitigate noise. This book provides a summary of tire noise and vibration research, with a focus on new simulation and measurement techniques.
Cover Automotive Tire Noise and Vibrations: Analysis, Measurement and Simulation Copyright Contents List of Contributors Preface 1 Background introduction References 2 Tire/road noise separation: tread pattern noise and road texture noise 2.1 Introduction 2.2 Close proximity measurement 2.3 Tire/road noise separation 2.3.1 Two noise components 2.3.2 Order tracking analysis 2.3.3 Noise separation results 2.4 Tire/road wheel noise separation and combination 2.5 Conclusion Acknowledgments References 3 Influence of tread pattern on tire/road noise 3.1 Introduction 3.2 Tire/road noise separation 3.3 Tread pattern parameterization 3.3.1 Tread profile spectrum 3.3.2 Air volume velocity spectrum 3.4 Correlation between tread pattern and tire noise 3.5 Conclusion Acknowledgments References 4 Influence of road texture on tire/road noise 4.1 Introduction 4.2 Rough and smooth pavement 4.2.1 Total noise 4.2.2 Tread pattern noise 4.2.3 Nontread pattern noise 4.2.4 Percent contribution from the two noise components 4.3 Pavement texture characterization 4.4 Spectral trend between pavement texture and tire/road noise 4.5 Transfer function and regression model 4.6 Conclusion Acknowledgments References 5 Measurement methods of tire/road noise 5.1 Introduction 5.2 Tire noise and vibrations: indoor testing 5.2.1 Indoor testing: structural borne noise characterization 5.2.1.1 Indoor structural borne noise characterization: stationary tire 5.2.1.2 Indoor structural borne noise characterization: rolling tire impact test 5.2.1.3 Indoor structural borne noise characterization: high frequency structural borne noise characterization 5.2.2 Indoor airborne noise characterization 5.3 Outdoor testing 5.3.1 Outdoor testing: subjective evaluation 5.3.2 Outdoor testing: objective evaluation 5.3.2.1 Outdoor objective evaluation: structural borne noise 5.3.2.2 Outdoor objective evaluation: airborne noise 5.3.2.3 Outdoor objective evaluation: pass-by noise measurement 5.4 Summary References Further reading 6 Generation mechanisms of tire/road noise 6.1 Introduction 6.2 Tire structural borne noise and airborne noise 6.2.1 Tire structural borne noise 6.2.2 Tire airborne noise 6.3 Tire noise and vibration: generation mechanisms 6.3.1 Impact induced noise and vibration 6.3.2 Air pumping 6.3.3 Friction-induced noise and vibration 6.3.4 Tire nonuniformity as a vibration source 6.4 Tire structural borne noise transmission mechanism 6.4.1 Low frequency transmissibility (below 30Hz) 6.4.2 Mid-frequency transmissibility from 30 to 500Hz 6.4.3 Effect of rolling on tire transmissibility 6.5 Tire noise and vibration amplification by acoustic resonance 6.5.1 Tire cavity resonance 6.5.2 Tire pipe resonance 6.5.3 Tire horn effect 6.6 Summary References Further reading 7 Suspension vibration and transfer path analysis 7.1 Introduction 7.2 Excitations of suspension system from road and tire 7.2.1 Excitation from road roughness 7.2.2 Excitation generated by tire 7.3 Theoretical basis of transfer path analysis method 7.3.1 Traditional transfer path analysis method 7.3.1.1 Frequency response function 7.3.1.2 Identification of structural load 7.3.1.3 Analysis of transfer path 7.3.2 Operational transfer path analysis 7.4 Transfer path analysis of suspension vibration 7.4.1 Frequency response function of suspension and car body system 7.4.2 Identification of load between suspension and car body 7.4.3 Transfer path analysis of suspension vibration 7.5 Transfer path analysis of structure-borne tire/road noise 7.5.1 Transfer function of structure-borne noise 7.5.2 Identification of load on path point and principal component analysis 7.5.3 Analysis of interior noise from tire/road interaction based on transfer path analysis 7.5.3.1 Transfer path analysis of structure-borne tire/road noise based on test 7.5.3.2 Control of structure-borne tire/road noise based on simulation 7.6 Summary Nomenclatures References 8 Structure-borne vibration of tire 8.1 Introduction 8.2 Modal characteristics of tire vibration and influencing parameters 8.2.1 Modal characteristics of tire vibration 8.2.2 Influencing parameters of modal characteristics of tire vibration 8.2.2.1 Influence of tire pressure 8.2.2.2 Influence of tread pattern 8.2.2.3 Influence of tire mass 8.2.2.4 Influences of belt angle and Young’s moduli of belt cord and tread compound 8.3 Modal test methods of a tire 8.4 Analytical calculation method of tire mode 8.4.1 Two-dimensional ring model of a tire 8.4.1.1 Strain of ring 8.4.1.2 Initial stress 8.4.1.3 Velocity of point at middle surface of ring 8.4.1.4 Work of inflation pressure 8.4.2 Three-dimensional ring model of tire 8.4.2.1 Stress and strain of tire crown 8.4.2.2 Equations of motion of three-dimensional ring model 8.4.2.3 In-plane free vibration mode of a tire 8.4.2.4 Out-of-plane free vibration mode of a tire 8.5 Modal analysis of a tire based on finite element method 8.5.1 Differential equations of a dynamic system 8.5.2 Methods of solving natural frequency and modal shape 8.5.3 Establishment of finite element model of a tire 8.5.4 Natural frequency and modal shape of a tire 8.6 Summary Nomenclature References 9 Structural-acoustic analysis of tire cavity system 9.1 Introduction 9.2 Frequency and wave number 9.3 Tire cavity resonance 9.4 Tire-cavity-wheel system 9.5 Tire cavity resonance frequency 9.5.1 Degenerate tire cavity modes 9.6 Tire tread natural frequency and mode shape 9.7 Structural-acoustic coupling of tire tread and cavity 9.7.1 Impedance-mobility approach 9.8 Finite element simulation of tire structural resonance 9.9 Finite element simulation of structural-acoustic coupling of tire cavity 9.10 Experiment using model from FEM 9.11 Effect of loaded tire 9.12 Road experiment using internal microphone 9.13 Summary Nomenclature References 10 Computer-aided engineering findings on the physics of tire/road noise 10.1 Introduction 10.2 Computer-aided engineering simulation methodologies 10.2.1 Deterministic methods at low frequency 10.2.1.1 Finite element method 10.2.1.2 Boundary element method 10.2.1.3 Waveguide finite element method 10.2.2 Energy methods at high frequency 10.2.2.1 Statistical energy analysis 10.2.2.2 Energy finite element analysis 10.2.3 Hybrid methods in the mid frequency range 10.3 Other computer-aided engineering simulation methodologies 10.3.1 Computational fluid dynamics 10.3.2 Transfer path analysis 10.4 Vehicle suspension corner module simulation 10.5 Mechanisms of the wheel imbalance induced vibration 10.6 Tire–road interaction caused by dynamic force variation induced by a hexagon tire 10.7 Tire–road interface impact force and friction force-induced vibration 10.8 Finite element modeling of tire–pavement interaction 10.9 Auralization models of tire/road noise 10.10 Trends and challenges in computer-aided engineering modeling of tire/road noise 10.11 Summary Nomenclature References 11 Tire cavity noise mitigation using acoustic absorbent materials 11.1 Introduction 11.2 Sound absorption coefficient theory 11.2.1 Airflow resistivity 11.2.2 Empirical models 11.2.3 Effect of airflow resistivity 11.2.4 Effect of layer thickness 11.3 Absorption coefficient measurement methodologies 11.3.1 Impedance tube method 11.3.2 Alpha cabin 11.4 Tire cavity damping loss 11.5 Sound absorption with perforated plates, porous materials, and air gaps 11.6 Application to tire cavity 11.7 Multilayer configuration design 11.8 Analytical simulation of the multilayer sound absorber 11.9 Using finite element simulation 11.10 Experiments on tires 11.11 Experimental modal test (impact hammer test) 11.12 Experimental modal analysis test with a shaker excitation 11.13 Design of experiment (Taguchi) 11.14 Summary Nomenclature References 12 Statistical energy analysis of tire/road noise 12.1 Introduction 12.2 Basic principle of statistical energy analysis 12.2.1 Power balance equation of statistical energy analysis 12.2.2 Energy description of subsystem 12.2.3 Damping loss factor and coupling loss factor 12.3 Simulation of tire high-frequency vibration and tire cavity resonance noise 12.3.1 Statistical energy analysis model and simulation of tire structure 12.3.1.1 Subsystem partition and statistical energy analysis model of a tire 12.3.1.2 Parameters in statistical energy analysis model of a tire 12.3.1.3 Simulation results and analysis 12.3.2 Statistical energy analysis model and simulation of tire cavity system 12.3.2.1 Statistical energy analysis model of tire with cavity 12.3.2.2 Parameters of statistical energy analysis model and external excitation 12.3.2.3 Simulation of tire cavity system using statistical energy analysis 12.4 Tire/road noise modeling and simulation using statistical energy analysis 12.4.1 Generation and propagation of tire/road noise 12.4.2 Statistical energy analysis model of a car body 12.4.3 Input power in statistical energy analysis model 12.4.4 Parameters in statistical energy analysis model 12.4.5 Simulation of tire/road noise 12.5 Summary Nomenclature References 13 Pass-by noise: regulation and measurement 13.1 Introduction 13.2 Generation mechanisms and characteristics of the tire/road pass-by noise 13.2.1 Generation mechanisms of the tire/road pass-by noise 13.2.2 Pass-by noise frequency content 13.2.3 The effect of the air temperature on the pass-by noise 13.3 ISO 362-1/ECE R51.03 13.3.1 ISO 362-1/ECE R51.03 acceleration test targets 13.3.2 ISO 362-1/ECE R51.03 acceleration test gear selections 13.3.3 ISO 362-1/ECE R51.03 acceleration test 13.3.4 ISO 362-1/ECE R51.03 constant speed cruise test 13.3.5 Interpretation of test results under ISO 362-1/ECE R51.03 13.3.6 ISO 362-3 indoor pass-by noise test and simulation development 13.4 Source and contribution identification of pass-by noise 13.5 Other pass-by noise research and development 13.6 Summary Nomenclature References 14 Pass-by noise: simulation and analysis 14.1 Introduction 14.2 Pass-by noise prediction model 14.3 Sensitivity analysis and propagation of uncertainty 14.4 Substitution monopole technique 14.4.1 Method of correlated equivalent monopoles 14.4.2 Method of uncorrelated equivalent monopoles 14.4.2.1 Source strength definition of uncorrelated monopoles 14.4.2.2 Transfer functions 14.4.2.3 Determination of the source strength of uncorrelated monopoles 14.4.2.4 Validation experiments 14.5 Airborne source quantification method 14.6 Transmissibility approach 14.7 Numerical prediction methods for the pass-by noise 14.7.1 Neural networks approach 14.7.2 Boundary element method 14.8 Summary Nomenclature References 15 Summary and future scope References Index Back Cover