دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2022 نویسندگان: Houtan Jebelli (editor), Mahmoud Habibnezhad (editor), Shayan Shayesteh (editor), Somayeh Asadi (editor), SangHyun Lee (editor) سری: ISBN (شابک) : 3030771628, 9783030771621 ناشر: Springer سال نشر: 2022 تعداد صفحات: 229 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Automation and Robotics in the Architecture, Engineering, and Construction Industry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اتوماسیون و رباتیک در معماری، مهندسی و صنعت ساخت و ساز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اتوماسیون و رباتیک در معماری، مهندسی و صنعت ساخت و ساز بینش متمایز و یکپارچه ای را در مورد رباتیک ساخت و ساز فعلی و آینده ارائه می دهد و به خوانندگان دیدگاهی جامع برای ساختن نقشه راه و بهبودهای روشن برای انتقال موفقیت آمیز به سمت ساخت و ساز ارائه می دهد. ربات سازی این کتاب اصول و کاربردهای رباتیک، وسایل نقلیه خودران، و ماشینهای ادراکی انسان را در سایتهای ساختمانی پوشش میدهد. از طریق تحلیلهای تئوری و تجربی، پتانسیل رباتیک و سیستمهای خودکار را برای عملیات میدانی فعلی و آینده بررسی میکند و عواملی را که سرعت اجرای، مقیاس پذیرش و فراگیر بودن آنها را در صنعت تعیین میکنند، شناسایی میکند. این کتاب جنبههای فنی، اجتماعی و اقتصادی استفاده از رباتها را در ساختوساز، هم بهعنوان سیستمهای مستقل و هم بهصورت مشارکتی، ارزیابی میکند، که در ازای آن میتوانند فرصتی برای بررسی سیستماتیکتر این ماشینهای مجهز به هوش مصنوعی داشته باشند.
Automation and Robotics in the Architecture, Engineering, and Construction Industry provides distinct and unified insight into current and future construction robotics, offering readers a comprehensive perspective for constructing a road map and illuminating improvements for a successful transition towards construction robotization. The book covers the fundamentals and applications of robotics, autonomous vehicles, and human-perceptive machines at construction sites. Through theoretical and experimental analyses, it examines the potential of robotics and automated systems for current and future fieldwork operations and identifies the factors that determine their implementation pace, adoption scale, and ubiquity throughout the industry. The book evaluates the technical, societal, and economic aspects of adopting robots in construction, both as standalone and collaborative systems, which in return can afford the opportunity to investigate these AI-enabled machines more systematically.
Preface Contents Chapter 1: Automation and Robotics Technologies Deployment Trends in Construction 1.1 Introduction 1.1.1 Major Problems Facing the Construction Industry 1.1.2 Eras of Construction Disruption 1.1.3 The Future of Work 1.2 Automation and Robotics Technologies 1.2.1 Reality Computing Technologies 1.2.1.1 Unmanned Aerial Systems (UASs) 1.2.1.2 Laser Scanners 1.2.1.3 Rovers 1.2.1.4 360-Degree Technology 1.2.2 Visualization Technologies 1.2.2.1 Virtual Reality (VR) 1.2.2.2 Augmented Reality (AR) 1.2.2.3 Mixed Reality (MR) 1.2.2.4 Digital Twins (DT) 1.2.3 Automation Technology 1.2.3.1 Robotic Systems 1.2.3.2 Additive Manufacturing (AM) 1.2.3.3 Prefabrication and Modularization 1.2.3.4 Autonomous Equipment 1.2.4 Intelligent Systems 1.2.4.1 Internet of Things (IoT) 1.2.4.2 Artificial Intelligence (AI) 1.2.4.3 Cloud Computing 1.2.4.4 Big Data (BD) 1.2.4.5 Generative Design 1.2.4.6 Communication and Tracking (CT) Systems 1.2.4.7 Wearable Sensors 1.3 Automation and Robotics Technologies Deployment Trends in Construction 1.4 Applications of Automation and Robotics Technologies in Construction 1.4.1 Construction Process Automation 1.4.2 On-Site Fabrication and Operations 1.4.3 Off-Site Construction 1.4.4 Earthwork Operations 1.4.5 Jobsite Surveying and Construction Progress Monitoring 1.4.6 Inspection and Maintenance 1.4.7 Health and Safety Monitoring 1.4.8 Real-Time Decision-Making 1.4.9 Inventory and Stock Management 1.4.10 Demolition, Material Sorting, and Recycling 1.5 Conclusions References Chapter 2: Essential Knowledge, Skills, and Abilities Required for Talent Cultivation in Construction Automation and Robotics 2.1 Introduction 2.2 Automation and Robotics in Construction Management Education 2.2.1 Current Curriculum Integration 2.2.2 Addressing the Future of Work in Construction 2.3 Research Methodology 2.3.1 Phase 1: Literature Review 2.3.2 Phase 2: Semi-structured Interviews 2.3.3 Phase 3: Delphi Study 2.3.4 Consensus Measurement in Delphi Studies 2.3.5 Survey Development and Study Timeline 2.4 Results 2.4.1 Automation and Robotics KSAs Identified in Research 2.4.2 Review of Essential Automation and Robotics KSAs 2.4.2.1 Computing Competencies 2.4.2.2 Computer Science Competencies 2.4.2.3 Technology Competencies 2.4.2.4 Attitudes Competencies 2.4.3 Consensus Building of Automation and Robotics KSAs 2.4.3.1 Round 1: Initial Evaluation and Rating 2.4.3.2 Round 2: Final Evaluation and Rating 2.4.3.3 Delphi Study Final Results 2.5 Construction Automation and Robotics Competency Benchmark and Performance Assessment Framework 2.5.1 Competency Benchmark and Performance Assessment Framework 2.6 Conclusions Appendix References Chapter 3: Robotics and Automation in Construction (RAC): Priorities and Barriers Toward Productivity Improvement in Civil Infrastructure Projects 3.1 Introduction 3.2 Construction Productivity 3.3 Robotics and Automation in Construction (RAC) 3.4 Research Methodology 3.4.1 Survey Design and Analysis 3.4.2 Target Population 3.5 Results 3.5.1 Potential Contribution of RAC in Productivity Improvement 3.5.2 Prioritized Project Areas for RAC Implementation 3.5.3 Main Barriers and Challenges 3.6 Discussion 3.7 Conclusions References Chapter 4: Construction Automation and Sustainable Development 4.1 Introduction 4.2 Contributions of Construction Automation to Sustainability 4.2.1 Economic Contributions 4.2.1.1 Decreased Material Costs 4.2.1.2 Decreased Labor Costs 4.2.1.3 Improved Productivity 4.2.1.4 Improved Communications Through Digitization 4.2.2 Environmental Contributions 4.2.2.1 Waste Minimization 4.2.2.2 Shrinking Project Duration 4.2.3 Social Contributions 4.2.3.1 Improved Occupational Safety and Health 4.2.3.2 Improved Working Environment 4.2.3.3 Job Satisfaction 4.2.3.4 High-Quality Living Environment 4.3 Barriers to Maximizing Construction Automation Contribution to Sustainable Development 4.3.1 Lack of Widespread Consensus on Construction Automation Definition 4.3.2 Low Demand Due to the High Initial Costs of Automated Production Compared with Human Labor Costs 4.3.3 Eliminating Jobs 4.3.4 Lack of Systematic Guidance 4.4 Potentials for Enhancing Construction Automation 4.4.1 Prefabrication, Mass Production, and Modular Construction 4.4.2 Promoting On-Site Use of Automation Technologies 4.4.3 Improving the Cost-Effectiveness of Automation 4.5 Summary and Conclusion References Chapter 5: A Briefing on Technological, Societal, and Economical Aspects of Automation in Construction 5.1 Introduction 5.2 Methodology 5.3 Technological Aspect 5.3.1 Image Processing in Sustainable Urban Development 5.3.2 Results and Discussions 5.3.3 Contour Crafting 5.4 Social Aspect 5.4.1 Cultural Norms 5.5 Economical Aspect 5.6 Conclusion References Chapter 6: Human-Drone Interaction (HDI): Opportunities and Considerations in Construction 6.1 Introduction 6.2 Drone Applications in Construction 6.2.1 Pre-construction 6.2.1.1 Site Evaluation 6.2.1.2 Site Planning 6.2.2 Construction 6.2.2.1 Mapping and Earthwork Volumetrics 6.2.2.2 Construction Progress Monitoring 6.2.2.3 Construction Safety Monitoring and Inspection 6.2.2.4 Future Drone Applications 6.2.3 Post-construction 6.2.3.1 Structure and Infrastructure Inspection 6.2.3.2 Post-disaster Assessment 6.2.3.3 Marketing 6.3 Human-Drone Interaction: Definition 6.3.1 Definition 6.3.2 Roles of Humans in Human-Drone Interaction 6.3.3 Roles of Drones in Human-Drone Interaction 6.4 Research Areas of Human-Drone Interaction 6.4.1 Interaction Modalities 6.4.1.1 Gesture 6.4.1.2 Speech 6.4.1.3 Gaze 6.4.1.4 Brain Control 6.4.1.5 Touch 6.4.2 Interaction Distance 6.4.3 Human-Drone Trust 6.5 Challenges and Future Research Roadmap 6.6 Conclusion References Chapter 7: Safety Challenges of Human-Drone Interactions on Construction Jobsites 7.1 Introduction 7.2 Drones and Safety in Construction 7.2.1 Safety Issues in Construction 7.2.2 Drones in Contemporary Construction Environments and Potential Future Uses 7.2.3 Drone Safety Within Construction Work 7.3 Drone Safety Challenges 7.3.1 Physical Risks 7.3.1.1 Struck by Accidents 7.3.1.2 Caught-in or Caught-between Accidents 7.3.1.3 Indirect/Secondary Accidents 7.3.1.4 Dust and Particulates 7.3.2 Attentional Cost 7.3.2.1 Visual Distractions 7.3.2.2 Auditory Distractions 7.3.2.3 Cognitive Distractions 7.3.3 Psychological Impact 7.4 Future Research 7.5 Conclusion References Chapter 8: Assessing the Role of Wearable Robotics in the Construction Industry: Potential Safety Benefits, Opportunities, and Implementation Barriers 8.1 Introduction 8.2 Background 8.2.1 Work-Related Musculoskeletal Disorders (WMSDs) in Construction 8.2.2 Wearable Robotics (Exoskeletons) in Construction 8.3 Research Methodology 8.4 Results and Discussions 8.4.1 Existing Exoskeleton Applications in Construction 8.4.2 Online Survey Respondent Characteristics 8.4.2.1 Familiarity with Exoskeletons in the Construction 8.4.2.2 Can Exoskeletons Prevent WMSDs Per Body Region? 8.4.2.3 Can Exoskeleton Prevent Accidents Associated with WMSD Risk Factors? 8.4.3 Usability of Exoskeleton for Flooring Tasks (Flex Lift) 8.5 Conclusions References Chapter 9: Worker-Aware Task Planning for Construction Robots: A Physiologically Based Communication Channel Interface 9.1 Introduction 9.2 Physiologically Based Human-Robot Collaboration (HRC) 9.2.1 Current Investigations on Physiologically Based HRC 9.2.2 Representative Structure of the Physiologically Based HRC 9.3 Fault-Tolerant Algorithm in Physiologically Based HRC 9.4 Case Study to Evaluate the Performance of the Proposed Fault-Tolerant Mechanism 9.5 Results and Discussion 9.5.1 Results of the EEG-Based HRC Masonry Task 9.5.2 Results of the EMG-Based HRC Masonry Task 9.5.3 Discussion on the Performance of the Fault-Tolerant Algorithm 9.6 Conclusions References Chapter 10: Workers’ Trust in Collaborative Construction Robots: EEG-Based Trust Recognition in an Immersive Environment 10.1 Introduction 10.2 Trust in Human-Robot Collaboration 10.2.1 Trust in Automated Systems 10.2.2 Trust in Collaborative Robots 10.2.3 Trust Measurement Techniques 10.3 EEG-Based Trust Measurement in HRC 10.3.1 Overview 10.3.2 EEG Signals Artifact Reduction 10.3.3 EEG Signals Feature Extraction 10.3.4 Supervised Learning Algorithms for Trust Assessment 10.4 Experimental Procedure 10.5 Results and Discussion 10.6 Conclusion References Index