دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Santi M. Mandal, Debarati Paul سری: ISBN (شابک) : 1071623710, 9781071623718 ناشر: Springer سال نشر: 2022 تعداد صفحات: 212 [213] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Automation and Basic Techniques in Medical Microbiology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اتوماسیون و تکنیک های اساسی در میکروبیولوژی پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب اصول، روششناسی و کاربردهای تکنیکهای آزمایشگاهی میکروبیولوژیکی را مورد بحث قرار میدهد. تاکید ویژه ای بر استفاده از ماشین های خودکار مختلف دارد که برای میکروبیولوژی پزشکی و آزمایشگاه های تشخیصی ضروری هستند. کتاب شامل یازده فصل اصلی است. فصل اول اقدامات آزمایشگاهی خوبی را که باید توسط دانشجویان در همه آزمایشگاههای بیولوژیکی، شیمی یا میکروبیولوژی دنبال شود، تشریح میکند. فصل بعدی خصوصیات دستی و خودکار میکروبهای مقاوم به آنتیبیوتیک را شرح میدهد و به دنبال آن فصلی در مورد ابزارها و تکنیکهای مبتنی بر ژنومیک که جزء تحقیقات هستند، ارائه میشود. فصلهای بعدی به تکنیکهای مهم دیگری مانند تکنیکهای مبتنی بر ایمونولوژی، اسپکتروفتومتری و انواع مختلف آن، MALDI-TOFF و ریزآرایهها میپردازند، که هر کدام با تصاویر و شرح مفصلی از پروتکلها و برنامهها. این کتاب همچنین دستورالعمل های مهم خاصی را در مورد برنامه ریزی آزمایش و تفسیر نتایج به دانش آموزان می دهد. این کتاب بسیار آموزنده است و آخرین تکنیک ها را ارائه می دهد. این یک خلاصه مفید برای دانشجویان تحصیلات تکمیلی و فوق لیسانس و همچنین محققان پیشرفته تر است.
This book discusses principles, methodology, and applications of microbiological laboratory techniques . It lays special emphasis on the use of various automated machines that are essential for medical microbiology and diagnostic labs. The book contains eleven major chapters. The first chapter describes the good lab practices which should be followed by the students in all biological, chemistry or microbiology laboratories. The next chapter describes manual and automated characterization of antibiotic resistant microbes, followed by a chapter on genomics based tools and techniques that are integral to research. Further chapters deal with other important techniques like immunology based techniques, spectrophotometry and its various types, MALDI-TOFF and microarrays, each with illustrations and detailed description of the protocols and applications. The book also gives certain important guidelines to the students about the planning the experiment and interpreting results. The book is highly informative and provides latest techniques. It is a handy compendium for graduate and post graduate students, as well as more advanced researchers.
Preface Acknowledgements Contents About the Authors 1: Good Laboratory Practices 1.1 Introduction 1.2 Basic Record and Lab Note Book 1.3 Laboratory Safety Equipment 1.4 Biosafety Levels and Practices 2: Automation in Medical Microbiology 2.1 Introduction 2.2 Applications of Automation 2.3 Advantages and Disadvantages 2.3.1 Advantages of Using Auto-analysers 2.3.2 Disadvantages of Automation 2.4 Types of Auto-analysers 2.5 History of Auto-analysers 2.6 Laboratory Automation and Total Laboratory Automation 2.7 Types and Applications of Auto-analysers in Microbiology 2.7.1 Microbiological Specimen Processor 2.7.2 Routine Biochemistry Analysers 2.7.3 Immunology-Based Analysers 2.7.4 Haematology Analysers 2.7.5 Cell Counter 2.7.6 Coagulometer(s) 2.7.7 Additional Instrument for Haematology-Based Methods 2.7.8 Other Miscellaneous Analysers References 3: Manual and Automated Characterization of Multi-antibiotic-Resistant (MAR) Bacteria 3.1 Introduction 3.2 Types of Antibiotic Sensitivity Tests 3.2.1 Kirby-Bauer Disc Diffusion Method 3.2.2 The Minimum Inhibitory Concentration (MIC) Method 3.2.3 RAPD PCR Analysis 3.2.4 Multiplex PCR 3.2.5 Padlock PCR and Microarray Analysis 3.2.6 Real-Time PCR for Quantitative Data References 4: Rapid Microbial Genome Sequencing Techniques and Applications 4.1 Introduction 4.2 WGS Techniques 4.3 Data Analysis Protocol for WGS (adapted from Gautam et al. 2019) 4.4 Applications 4.5 Challenges References 5: Spectroscopy: Principle, Types and Microbiological Applications 5.1 Introduction 5.2 General Types of Spectra 5.2.1 Continuous Spectra 5.2.2 Discrete Spectra 5.2.2.1 Emission Line Spectra 5.2.2.2 Absorption Line Spectra 5.3 Principle of Spectroscopy 5.4 Optical Instruments in Spectroscopy 5.5 Is Spectroscopy Different from Spectrometry? 5.6 Uses of Spectroscopy 5.7 Types of Spectroscopy 5.7.1 Ultraviolet and Visible Spectroscopy 5.7.1.1 Background 5.7.1.2 Principle 5.7.1.3 Applications of UV-Vis Spectroscopy 5.7.1.3.1 Spectroscopy in Environmental Analysis 5.7.1.3.2 UV-Vis Spectroscopy for Water Analysis and Environmental Applications 5.7.1.3.3 Spectrophotometric Analysis of Bacterial Water Contaminants 5.7.1.3.4 Spectrophotometers for Chlorine and Flouride Quantification 5.7.1.3.5 UV-Vis Spectroscopy for Geological Studies Linked to Water Contamination 5.7.1.3.6 Other Applications 5.7.2 Infrared Spectroscopy 5.7.2.1 Introduction 5.7.2.1.1 Molecular Vibrations and Vibrational Frequency 5.7.2.1.1.1 Vibration of Diatomic Molecules 5.7.2.1.1.2 Vibrational Transitions 5.7.2.1.1.3 Types of Vibrations (Sharma 2007) 5.7.2.2 Instrumentation 5.7.2.2.1 Source 5.7.2.2.2 Sample Types and Preparation 5.7.2.2.3 Various Types of Detectors Used 5.7.2.3 FTIR (Fourier Transform IR Spectrometers) 5.7.2.4 Advantages of FTIR 5.7.2.5 Applications of IR Spectroscopy 5.7.3 Mass Spectrometry 5.7.3.1 The Mass Spectrometer 5.7.3.2 The Nature of Mass Spectra 5.7.3.3 The Working Principle of a Mass Spectrometer 5.7.3.4 Applications of Mass Spectrometry 5.7.3.4.1 Analysis of Biomolecules 5.7.3.4.2 Analysis of Glycans 5.7.3.4.3 Analysis of Lipids 5.7.3.4.4 Analysis of Proteins and Peptides 5.7.3.4.5 Analysis of Oligonucleotides 5.7.4 Nuclear Magnetic Resonance (NMR) Spectroscopy 5.7.4.1 NMR Spectrum 5.7.4.2 NMR Spectrometers 5.7.4.3 Applications of NMR 5.8 Applications of Spectroscopy in Microbiology References 6: MALDI-TOF MS for Bacterial Identification 6.1 Introduction 6.2 MALDI: Sample Preparation and Analysis 6.2.1 Sample Preparation 6.2.2 Protein Digestion 6.2.3 MALDI/MS Analysis 6.3 Uses of MALDI-TOF 6.4 MALDI-TOF MS-Based Antimicrobial Susceptibility Testing 6.4.1 Detection of Antibiotic Degradation 6.4.2 Identification of Biomarker for Detecting Antibiotic-Resistant Strains 6.4.3 Phenotypic Antibiotic Resistance Analysis of Bacterial Strains 6.5 Advantages and Limitations 6.6 Challenges References 7: Enzyme-Linked Immunosorbent Assay (ELISA) 7.1 Introduction 7.2 Indirect ELISA 7.2.1 Steps of Indirect ELISA 7.3 Direct or Sandwich ELISA 7.3.1 Steps of Double Antibody Sandwich (DAS) ELISA 7.3.2 Steps of Triple Antibody Sandwich (TAS) ELISA 7.4 Competitive ELISA 7.5 Radioimmunoassay (RIA) 7.5.1 Steps of RIA 7.6 Automated ELISA References 8: Isolation of Normal Microbiota from the Human Body and Microbial Identification 8.1 Introduction 8.2 Collection of Samples from Various Parts of the Body 8.3 Biochemical Tests for Identification of Bacteria 8.3.1 Carbohydrate Fermentation 8.3.2 Indole Production Test 8.3.3 Methyl Red Test 8.3.4 Voges-Proskauer Test 8.3.5 Citrate Utilization 8.3.6 Urease Test 8.3.7 Catalase Test 8.3.8 Coagulase Test 8.3.9 Lactophenol Cotton Blue 8.4 Rapid Multitest Systems 8.4.1 Automated Validation of Every Result (VITEK) System for Microbial Identification 8.4.2 Biolog: Phenotype Microarrays 8.4.3 Electromigration Techniques 8.4.4 MIDI Sherlock System for FAME Analysis 8.5 Computer-Aided Gene Analysis for Identification of Microbes 8.5.1 Ribosomal RNA Gene Sequencing 8.5.2 Phylogenetic Analysis 8.5.3 Generating Multiple Sequence Alignments 8.6 Conclusion References 9: Microarrays and Its Application in Medical Microbiology 9.1 Introduction 9.2 Basic Principle 9.3 Immobilization Strategies Used for Preparing Microarrays 9.4 Manufacture of the Different Components of Microarrays 9.4.1 Oligonucleotide Synthesis 9.5 Properties of Fluorescence and Fluorophores 9.6 Measuring Fluorescence 9.7 Labelling Samples for Analysis of Gene Expressions 9.8 Labelling Strategies 9.8.1 Labelling Bacterial Transcripts 9.9 Labelling Samples for Gene Expression Microarray 9.10 Calculating Label Density in Probe 9.11 Steps for Microarray Hybridization 9.12 Different Slide Types for Microarray 9.13 Comparing Automated and Manual Hybridization (Table 9.2) 9.14 Imaging for Microarray System 9.15 Optical System for Imaging in Microarray 9.16 Detector System, Amplifier System and Digital Resolution for Imaging in Microarray 9.17 Scanners and Excitation Light System for Microarray 9.18 Data Analysis in Microarray 9.19 Normalization of Data for Correcting Experimental Variation Between Slides 9.20 Visualizing of Data and Clustering 9.21 Troubleshooting During Microarray-Based Experiments 9.22 Applications of Microarrays 9.23 Limitations of Microarray Technique 9.24 Conclusion and Future Direction References 10: Immunotechnology 10.1 Introduction 10.1.1 Monoclonal Antibodies: Purification and Concentrate 10.1.1.1 Principle 10.1.1.2 Method 10.1.2 Concentrate the Purified Antibody 10.1.3 Analysis and Quality Assurance 10.1.4 Preparation of Separation Gel 10.1.5 Preparation of Protein Sample and Loading 10.1.6 Staining and Distaining of the Gel 10.1.7 Quality Assurance 10.2 Immunoelectrophoresis 10.2.1 Protocol 10.3 Western Blotting 10.3.1 Required Material 10.3.2 Protocol 10.3.3 Blocking of Membrane 10.3.4 Binding of Primary Antibody 10.3.5 Binding of Secondary Antibody 10.4 Determination of Cell Number 10.4.1 Required Material 10.4.2 Method 10.5 Immunofluorescence Assay 10.5.1 Principle 10.5.2 Immunofluorescence Technique 10.5.3 Labelling of Antibodies with Fluorochromes 10.5.4 Detection of Fluorochrome-Labelled Reagent 10.5.5 Selection of Fluorochrome 10.5.6 Materials 10.5.7 Blocking Buffer 10.5.8 Dilution Buffer 10.5.9 Fixative Solution 10.5.10 Immunostaining 10.5.11 Immunofluorescence Staining Method 10.5.12 Uses References 11: Advances in Microscopy 11.1 Introduction 11.2 Light Microscopy 11.2.1 Physical Properties of Light 11.2.2 Reflection 11.2.3 Transmission 11.2.4 Absorption 11.2.5 Refraction 11.2.6 Diffraction 11.2.7 The Human Eye 11.2.8 Polarization 11.2.9 Fluorescence 11.2.10 Important Concepts in Microscopy 11.2.11 Contrast 11.2.12 Magnification 11.2.13 Sensitivity 11.2.14 Simple Theory of Microscopy 11.2.15 Metric Units Used in Microscopy 11.2.16 Light Microscopes 11.2.16.1 The Compound Light Microscope 11.2.16.2 Inverted Microscope 11.3 Dark Field Microscope 11.4 Phase Contrast Microscopy 11.5 Differential Interference Contrast Microscopy (DIC) 11.6 Fluorescence Microscopy 11.6.1 Fluorescent Antibody Technique or Immunofluorescence 11.6.2 Identification of Chromosome 11.6.2.1 Fluorescence In Situ Hybridization (FISH) 11.7 Polarization Microscopy 11.8 Confocal Microscopy 11.9 Electron Microscopy 11.9.1 Introduction 11.9.2 Transmission Electron Microscope (TEM) 11.9.3 Scanning Electron Microscope 11.9.4 Scanning Tunneling Microscope (STM) 11.9.5 Atomic Force Microscope 11.9.6 Sample Preparation for Light Microscope 11.9.6.1 Wet Mount Method 11.9.7 Histological Techniques 11.9.8 Sample Preparation for Electron Microscope 11.9.9 Sample Preparation of TEM and SEM 11.9.10 Cryoelectron Microscopy References Index