دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Dong Yu. Li Deng
سری: Signals and Communication Technology
ISBN (شابک) : 1447157788, 9781447157793
ناشر: Springer
سال نشر: 2015
تعداد صفحات: 329
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Automatic speech recognition. A deep learning approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تشخیص خودکار گفتار رویکرد یادگیری عمیق نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مروری جامع از پیشرفتهای اخیر در زمینه تشخیص خودکار گفتار با تمرکز بر مدلهای یادگیری عمیق از جمله شبکههای عصبی عمیق و بسیاری از انواع آنها ارائه میکند. این اولین کتاب تشخیص خودکار گفتار است که به رویکرد یادگیری عمیق اختصاص یافته است. علاوه بر بررسی دقیق ریاضی موضوع، این کتاب همچنین بینش و مبانی نظری مجموعهای از مدلهای یادگیری عمیق بسیار موفق را ارائه میکند.
This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.
Preface Acknowledgments Glossary Introducing Dialogue Systems What is a Dialogue System? Why Develop a Dialogue System? A Brief History of Dialogue Systems Text-Based and Spoken Dialogue Systems Voice User Interfaces Chatbots Embodied Conversational Agents Robots and Situated Agents Limitations of Early Dialogue Systems Present-Day Dialogue Systems Dialogue Systems on Messaging Platforms Dialogue Systems on Smartphones Dialogue Systems on Smart Speakers and Other Devices Dialogue Systems in Cars How Current Dialogue Systems Are Different Modeling Conversation in Dialogue Systems User-Initiated Dialogues System-Directed Dialogue Multi-Turn Open-Domain Dialogue Designing and Developing Dialogue Systems Rule-Based Dialogue Systems: Architecture, Methods, and Tools A Typical Dialogue Systems Architecture Automatic Speech Recognition (ASR) Natural Language Understanding (NLU) Dialogue Management Natural Language Generation (NLG) Text-to-Speech Synthesis (TTS) Designing a Dialogue System Tools for Developing Dialogue Systems Visual Design Tools Scripting Tools for Handcrafting Dialogue Systems Advanced Toolkits and Frameworks Research-Based Toolkits Which is the Best Toolkit? Rule-Based Techniques in Dialogue Systems Participating in the Alexa Prize Statistical Data-Driven Dialogue Systems Motivating the Statistical Data-Driven Approach Dialogue Components in the Statistical Data-Driven Approach Natural Language Understanding Dialogue Management Natural Language Generation Reinforcement Learning (RL) Representing Dialogue as a Markov Decision Process From MDPs to POMDPs Dialogue State Tracking Dialogue Policy Problems and Issues with Reinforcement Learning and POMDPs Evaluating Dialogue Systems How to Conduct the Evaluation Laboratory Studies vs. Evaluations in the Wild Evaluating Task-Oriented Dialogue Systems Quantitative Metrics for Overall Dialogue System Evaluation Quantitative Metrics for the Evaluation of the Sub-Components of Dialogue Systems Qualitative/Subjective Evaluation Evaluating Open-Domain Dialogue Systems Evaluation at the Level of the Exchange Evaluation at the Level of the Dialogue ChatEval: A Toolkit for Chatbot Evaluation Evaluations in Challenges and Competitions Evaluation Frameworks PARADISE Quality of Experience (QoE) Interaction Quality What is the Best Way to Evaluate Dialogue Systems? End-to-End Neural Dialogue Systems Neural Network Approaches to Dialogue Modeling A Neural Conversational Model Introduction to the Technology of Neural Dialogue Word Embeddings Recurrent Neural Networks (RNNs) Long Short-Term Memory Units The Encoder-Decoder Network Retrieval-Based Response Generation Task-Oriented Neural Dialogue Systems Open-Domain Neural Dialogue Systems Alexa Prize 2020 Google\'s Meena Facebook\'s BlenderBot OpenAI\'s GPT-3 Some Issues and Current Solutions Semantic Inconsistency Affect Dialogue Systems: Datasets, Competitions, Tasks, and Challenges Datasets and Corpora Competitions, Tasks, and Challenges Additional Readings Challenges and Future Directions Multimodality in Dialogue Multimodal Fusion Multimodal Fission Multimodality in Smartphones and Smart Speakers with Displays Visual Dialogue and Visually Grounded Language Data Efficiency: Training Dialogue Systems with Sparse Data Knowledge Graphs for Dialogue Systems Reasoning and Collaborative Problem Solving in Dialogue Systems Discourse and Dialogue Phenomena Making Reference Detecting, Maintaining, and Changing Topic Multi-Party Dialogue Incremental Processing in Dialogue Turn-Taking in Dialogue Hybrid Dialogue Systems Dialogue with Social Robots Dialogue and the Internet of Things Social and Ethical Issues The Way Ahead Toolkits for Developing Dialogue Systems Bibliography Author\'s Biography