دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Dana Copot (editor)
سری:
ISBN (شابک) : 0128159758, 9780128159750
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 338
[334]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 Mb
در صورت تبدیل فایل کتاب Automated Drug Delivery in Anesthesia به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحویل خودکار دارو در بیهوشی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تحویل خودکار دارو در بیهوشی بررسی کامل ابزارها و روش های موجود در مورد دارورسانی بیهوشی را ارائه می دهد و شکاف بین پیشرفت تحصیلی، تحقیقات و عملکرد بالینی را پر می کند. این کتاب رویکردی بین رشتهای دارد و اطلاعاتی را در مورد ابزارهای توسعهیافته در رشتههای دیگر مانند ریاضیات، فیزیک، زیستشناسی و مهندسی سیستم جمعآوری میکند و آنها را در دارورسانی به کار میبرد. نویسندگان کتاب در مورد عنصر گمشده حلقه تنظیمی کامل بیهوشی بحث می کنند: حسگر و مدل برای ارزیابی مسیر درد. این تنها کتابی است که به طور خاص بر روی ارائه بیهوشی تمرکز دارد.
Automated Drug Delivery in Anesthesia provides a full review of available tools and methods on the drug delivery of anesthesia, bridging the gap between academic development, research and clinical practice. The book takes an interdisciplinary approach, pulling information about tools developed in other disciplines such as mathematics, physics, biology and system engineering and applying them to drug delivery. The book's authors discuss the missing element of complete regulatory loop of anesthesia: the sensor and model for pain pathway assessment. This is the only book which focuses specifically on the delivery of anesthesia.
Contents List of Contributors About the Editor 1 Introduction 1.1 Introduction 2 An overview of computer-guided total intravenous anesthesia and monitoring devices-drug infusion control strategies and analgesia assessment in clinical use and research 2.1 Introduction 2.2 Early history of anesthesia delivery control 2.3 Principles of anesthesia regulation 2.4 Overview of closed-loop control strategies 2.5 Overview of current analgesia monitors 2.6 Prototype ANSPEC-PRO: noninvasive pain monitor 2.6.1 Device methodology 2.6.2 Measurements protocols and instructions 2.6.3 Experimental results and statistical analysis Bioelectrical-impedance as function of frequency Variability within individual/s Acknowledgment References 3 A non-Newtonian impedance measurement experimental framework: modeling and control inside blood-like environments-fractional-order modeling and control of a targeted drug delivery prototype with impedance measurement capabilities 3.1 Introduction 3.1.1 Blood as a non-Newtonian fluid 3.1.2 Bridging the gap towards targeted drug delivery for anesthesia 3.1.3 The suitability of fractional calculus for non-Newtonian impedance measurement 3.2 Experimental setup 3.2.1 Circulatory system replica 3.2.2 Submerged prototype 3.2.3 Software development 3.2.3.1 Server functionality and implementation 3.2.3.2 Submersible's implementation 3.2.4 Platform's versatility in education 3.3 Experimental measurements 3.3.1 Impedance measurement 3.3.2 Manual mode experimental test results 3.4 Modeling the submersible's dynamics 3.4.1 Development of a model based on ship propulsion models 3.4.2 Fractional-order modeling of the submersible 3.5 Fractional-order control of the submersible 3.5.1 Fractional-order tuning methodology 3.5.2 Experimental validation of the control strategy Acknowledgments References 4 A multiscale pathway paradigm for pain characterization 4.1 Introduction 4.2 Physiological background 4.2.1 Molecular basis 4.2.2 Potassium channels activated pain signaling 4.3 The role of fractional calculus 4.4 Multiscale modeling approach 4.4.1 From stimulus to nociception receptor model 4.4.2 The nanoparticle electrochemical impedance model 4.4.3 The signaling pathway model 4.4.4 Pain perception model 4.4.5 The multiscale lumped model 4.5 Discussion 4.5.1 Model evaluation 4.5.2 Enabling characterizing analgesia levels 4.5.3 On model specificity 4.5.4 On drug trapping 4.6 Conclusions Acknowledgments References 5 Models for control of intravenous anesthesia 5.1 Introduction 5.1.1 Scope 5.1.2 Disposition 5.2 Models from clinical pharmacology 5.2.1 The purpose of modeling 5.2.2 Pharmacokinetics 5.2.3 Pharmacodynamics 5.2.3.1 Effect dynamics 5.2.3.2 The Hill sigmoid 5.2.4 The PKPD model structure 5.2.5 Pharmacodynamic interaction 5.2.6 Parameter identification 5.3 Models for control 5.3.1 The purpose of modeling 5.3.2 Clinical data 5.3.2.1 Data quality 5.3.2.2 Identifiability 5.3.3 Models for closed-loop anesthesia 5.3.3.1 Models from clinical pharmacology 5.3.3.2 Models from clinical pharmacology with identified nonlinearity 5.3.3.3 Population average PK with identified PD model 5.3.3.4 First-order models 5.3.3.5 Application-specific reduced-order model structures 5.3.3.6 Online identification and adaptive methods 5.3.4 Patient variability 5.3.4.1 Limitations due to uncertainty 5.3.4.2 Reducing variability 5.3.5 Addressing the PD nonlinearity 5.3.6 Equipment and disturbance models Acknowledgment References 6 Modeling and control of neuromuscular blockade level in general anesthesia 6.1 Introduction 6.2 Drug effect models 6.3 Parameter identification 6.4 Control of the NMB level 6.4.1 Open-loop methods 6.4.2 Closed-loop scheme based on total mass control 6.5 GALENO-Integrated design system for monitoring, digital processing, and control in anesthesia 6.6 Conclusions Acknowledgment 6.A Realistic database P of patients Pi = (αi, γi), i=1, ..., 50. The parameters αi and γi were obtained by the prediction error method References 7 Computer-guided control of the complete anesthesia paradigm 7.1 Introduction 7.2 Clinical context 7.2.1 Pain measurement during consciousness 7.2.2 Pain measurement during unconsciousness (e.g., general anesthesia) 7.2.3 Commercial devices 7.2.4 Challenges to be tackled towards a complete anesthesia control 7.3 Closed-loop control of the full anesthesia paradigm 7.4 Preliminary results and discussion 7.4.1 On models 7.4.2 On control algorithms 7.4.3 On stability and safety 7.4.4 On units and model parameter values 7.4.5 On additional signals 7.4.6 On integrated cyber-medical assisting devices 7.5 Conclusions and perspectives References 8 Optimization-based design of closed-loop control of anesthesia 8.1 Introduction 8.2 Problem formulation 8.2.1 General control scheme 8.2.2 Control specifications 8.2.3 Performance indices 8.3 State of the art 8.4 PKPD model 8.4.1 Model for propofol administration 8.4.2 Model for propofol and remifentanil coadministration 8.5 Optimization-based approach 8.6 PID control for propofol administration 8.7 Model-based control for propofol administration 8.8 Event-based control for propofol administration 8.9 Control for propofol and remifentanil coadministration 8.10 Simulation results 8.11 Discussion 8.12 Conclusions References 9 Integrative cybermedical systems for computer-based drug delivery 9.1 Introduction 9.2 Robust optimal control of tumor growth under angiogenic inhibition 9.2.1 Minimal model of angiogenic inhibiton 9.2.2 Impulsive control using direct multiple shooting 9.2.3 Continuous time RFPT method 9.3 Linear parameter varying method in biorelated controller design 9.3.1 The linear parameter varying framework 9.3.2 qLPV model development 9.3.2.1 Model-A 9.3.2.2 Model-B 9.3.3 Controller design 9.3.3.1 Tensor product model transformation-based control 9.3.3.2 Linear matrix inequality-based optimization 9.3.4 Extended Kalman filter design 9.3.5 Final control structure 9.3.6 Results 9.4 Tumor modeling and control 9.4.1 The tumor growth model 9.4.2 Parameter estimation 9.4.3 Results 9.5 Biostatistics 9.5.1 Large sample investigations with public health relevance 9.5.1.1 Hungarian myocardial infarction registry (HUMIR) The effect of gender on the prognosis of myocardial infarction Comparing traditional statistical and machine learning methods in mortality prediction 9.5.1.2 The analysis of administrative/financial data in healthcare 9.5.2 Biostatistical support of tumor growth modeling 9.6 Outlook to general anesthesia Acknowledgment References Index