دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: سری: ناشر: MathWorks سال نشر: 2022 تعداد صفحات: [2060] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 63 Mb
در صورت تبدیل فایل کتاب Automated Driving Toolbox User’s Guide به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای کاربر جعبه ابزار رانندگی خودکار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Sensor Configuration and Coordinate System Transformations Coordinate Systems in Automated Driving Toolbox World Coordinate System Vehicle Coordinate System Sensor Coordinate System Spatial Coordinate System Pattern Coordinate System Calibrate a Monocular Camera Estimate Intrinsic Parameters Place Checkerboard for Extrinsic Parameter Estimation Estimate Extrinsic Parameters Configure Camera Using Intrinsic and Extrinsic Parameters Ground Truth Labeling and Verification Get Started with Ground Truth Labelling Load Ground Truth Signals to Label Load Timestamps Open Ground Truth Labeler App Load Signals from Data Sources Configure Signal Display Label Ground Truth for Multiple Signals Create Label Definitions Label Video Using Automation Label Point Cloud Sequence Using Automation Label with Sublabels and Attributes Manually Label Scene Manually View Label Summary Save App Session Export and Explore Ground Truth Labels for Multiple Signals Sources vs. Signals in Ground Truth Labeling Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler Label Definitions Frame Navigation and Time Interval Settings Labeling Window Cuboid Resizing and Moving Polyline Drawing Polygon Drawing Zooming, Panning, and Rotating App Sessions Control Playback of Signal Frames for Labeling Signal Frames Main Signal Change Main Signal Display All Timestamps Specify Timestamps Frame Display and Automation Label Lidar Point Clouds for Object Detection Set Up Lidar Point Cloud Labeling Zoom, Pan, and Rotate Frame Hide Ground Label Cuboid Modify Cuboid Label Apply Cuboids to Multiple Frames Configure Display Create Class for Loading Custom Ground Truth Data Sources Custom Class Folder Class Definition Class Properties Method to Customize Load Panel Methods to Get Load Panel Data and Load Data Source Method to Read Frames Use Predefined Data Source Classes Tracking and Sensor Fusion Visualize Sensor Data and Tracks in Bird's-Eye Scope Open Model and Scope Find Signals Run Simulation Organize Signal Groups (Optional) Update Model and Rerun Simulation Save and Close Model Linear Kalman Filters Motion Model Measurement Models Filter Loop Built-In Motion Models in trackingKF Example: Estimate 2-D Target States Using trackingKF Extended Kalman Filters State Update Model Measurement Model Extended Kalman Filter Loop Predefined Extended Kalman Filter Functions Example: Estimate 2-D Target States with Angle and Range Measurements Using trackingEKF Planning, Mapping, and Control Display Data on OpenStreetMap Basemap Read and Visualize HERE HD Live Map Data Enter Credentials Configure Reader to Search Specific Catalog Create Reader for Specific Map Tiles Read Map Layer Data Visualize Map Layer Data HERE HD Live Map Layers Road Centerline Model HD Lane Model HD Localization Model Rotations, Orientations, and Quaternions for Automated Driving Quaternion Format Quaternion Creation Quaternion Math Extract Quaternions from Transformation Matrix Control Vehicle Velocity Velocity Profile of Straight Path Velocity Profile of Path with Curve and Direction Change Plan Path Using A-Star Path Planners Use ROS Logger App to Save ROS Messages from Simulink Cuboid Driving Scenario Simulation Create Driving Scenario Interactively and Generate Synthetic Sensor Data Create Driving Scenario Add a Road Add Lanes Add Barriers Add Vehicles Add a Pedestrian Add Sensors Generate Synthetic Sensor Data Save Scenario Keyboard Shortcuts and Mouse Actions for Driving Scenario Designer Canvas Operations Road Operations Actor Operations Preview Actor Times of Arrival Barrier Placement Operations Sensor Operations File Operations Prebuilt Driving Scenarios in Driving Scenario Designer Choose a Prebuilt Scenario Modify Scenario Generate Synthetic Sensor Data Save Scenario Euro NCAP Driving Scenarios in Driving Scenario Designer Choose a Euro NCAP Scenario Modify Scenario Generate Synthetic Detections Save Scenario Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer Choose 3D Simulation Scenario Modify Scenario Save Scenario Recreate Scenario in Simulink for 3D Environment Create Reverse Motion Driving Scenarios Interactively Three-Point Turn Scenario Add Road Add Vehicle Add Trajectory Run Simulation Adjust Trajectory Using Specified Yaw Values Generate INS Sensor Measurements from Interactive Driving Scenario Import Road Network Add Actor and Trajectory Smooth the Trajectory Add INS Sensor Simulate Scenario Export to MATLAB and Explore Sensor Data Export Scenario and Sensor to a Simulink Model Import ASAM OpenDRIVE Roads into Driving Scenario Import ASAM OpenDRIVE File Inspect Roads Add Actors and Sensors to Scenario Generate Synthetic Detections Save Scenario Export Driving Scenario to ASAM OpenDRIVE File Load Scenario File Export to ASAM OpenDRIVE Inspect Exported Scenario Limitations Import HERE HD Live Map Roads into Driving Scenario Set Up HERE HDLM Credentials Specify Geographic Coordinates Select Region Containing Roads Select Roads to Import Import Roads Compare Imported Roads Against Map Data Save Scenario Import OpenStreetMap Data into Driving Scenario Select OpenStreetMap File Select Roads to Import Import Roads Compare Imported Roads Against Map Data Save Scenario Import Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) into Driving Scenario Set Up Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Credentials Specify Geographic Coordinates Select Region Containing Roads Select Roads to Import Import Roads Compare Imported Roads Against Map Data Save Scenario Create Driving Scenario Variations Programmatically Generate Sensor Blocks Using Driving Scenario Designer Test Open-Loop ADAS Algorithm Using Driving Scenario Test Closed-Loop ADAS Algorithm Using Driving Scenario Automate Control of Intelligent Vehicles by Using Stateflow Charts Simulate INS Block Generate INS Measurements from Driving Scenario in Simulink Create Roads with Multiple Lane Specifications Using Driving Scenario Designer Open Driving Scenario Designer Add Road Define Multiple Lane Specifications Next Steps Export Driving Scenario to ASAM OpenSCENARIO File Load Scenario File Export to ASAM OpenSCENARIO ASAM OpenSCENARIO Representations Limitations 3D Simulation – User's Guide Unreal Engine Simulation for Automated Driving Unreal Engine Simulation Blocks Algorithm Testing and Visualization Unreal Engine Simulation Environment Requirements and Limitations Software Requirements Minimum Hardware Requirements Limitations How Unreal Engine Simulation for Automated Driving Works Communication with 3D Simulation Environment Block Execution Order Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox World Coordinate System Vehicle Coordinate System Choose a Sensor for Unreal Engine Simulation Simulate Simple Driving Scenario and Sensor in Unreal Engine Environment Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation Visualize Sensor Data from Unreal Engine Simulation Environment Customize Unreal Engine Scenes for Automated Driving Install Support Package for Customizing Scenes Verify Software and Hardware Requirements Install Support Package Set Up Scene Customization Using Support Package Migrate Projects Developed Using Prior Support Packages Customize Scenes Using Simulink and Unreal Editor Open Unreal Editor from Simulink Reparent Actor Blueprint Create or Modify Scenes in Unreal Editor Run Simulation Package Custom Scenes into Executable Package Scene into Executable Using Unreal Editor Simulate Scene from Executable in Simulink Apply Labels to Unreal Scene Elements for Semantic Segmentation and Object Detection Create Top-Down Map of Unreal Engine Scene Capture Screenshot Convert Screenshot to Map Place Cameras on Actors in the Unreal Editor Place Camera on Static Actor Place Camera on Vehicle in Custom Project Build Light in Unreal Editor Use AutoVrtlEnv Project Lighting in Custom Scene Create Empty Project in Unreal Engine Prepare Custom Vehicle Mesh for the Unreal Editor Step 1: Setup Bone Hierarchy Step 2: Assign Materials Step 3: Export Mesh and Armature Step 4: Import Mesh to Unreal Editor Step 5: Set Block Parameters RoadRunner Scenario Scenario Simulation Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink Author RoadRunner Actor Behavior Using Simulink or MATLAB System Objects Associate Actor Behavior in RoadRunner Scenario Publish Actor Behavior Tune Actor Parameters Simulate Scenario in RoadRunner Control Scenario Simulation Using MATLAB Inspect Simulation Results Using Data Logging Simulate RoadRunner Scenarios with Actors Modeled in Simulink Author RoadRunner Actor Behavior Using Simulink Author RoadRunner Actor Behavior Using User-Defined Actions in Simulink Associate Actor Behavior in RoadRunner and Simulate Scenario Simulate RoadRunner Scenarios with Actors Modeled in MATLAB Build Custom MATLAB System Object Behavior Associate Actor Behavior in RoadRunner Publish Actor Behavior as Proto File, Package or Action Asset Generate Behavior Proto File for Simulink or MATLAB System Object Behavior Generate Package from Simulink Model or MATLAB System Object Generation Action Asset File from Simulink Model Featured Examples Configure Monocular Fisheye Camera Annotate Video Using Detections in Vehicle Coordinates Read Data From ADTF DAT Files Read Sensor Messages from IDC file Automate Ground Truth Labeling Across Multiple Signals Automate Ground Truth Labeling of Lane Boundaries Automate Ground Truth Labeling for Semantic Segmentation Automate Attributes of Labeled Objects Evaluate Lane Boundary Detections Against Ground Truth Data Evaluate and Visualize Lane Boundary Detections Against Ground Truth Visual Perception Using Monocular Camera Create 360° Bird's-Eye-View Image Around a Vehicle Perception-Based Parking Spot Detection Using Unreal Engine Simulation Train a Deep Learning Vehicle Detector Ground Plane and Obstacle Detection Using Lidar Build Map and Localize Using Segment Matching Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation Code Generation for Tracking and Sensor Fusion Forward Collision Warning Using Sensor Fusion Adaptive Cruise Control with Sensor Fusion Forward Collision Warning Application with CAN FD and TCP/IP Multiple Object Tracking Tutorial Track Multiple Vehicles Using a Camera Track Vehicles Using Lidar: From Point Cloud to Track List Sensor Fusion Using Synthetic Radar and Vision Data Sensor Fusion Using Synthetic Radar and Vision Data in Simulink Autonomous Emergency Braking with Sensor Fusion Visualize Sensor Coverage, Detections, and Tracks Extended Object Tracking of Highway Vehicles with Radar and Camera Track-to-Track Fusion for Automotive Safety Applications Track-to-Track Fusion for Automotive Safety Applications in Simulink Visual-Inertial Odometry Using Synthetic Data Lane Following Control with Sensor Fusion and Lane Detection Track-Level Fusion of Radar and Lidar Data Track-Level Fusion of Radar and Lidar Data in Simulink Track Vehicles Using Lidar Data in Simulink Grid-Based Tracking in Urban Environments Using Multiple Lidars Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker Generate Code for a Track Fuser with Heterogeneous Source Tracks Highway Vehicle Tracking with Multipath Radar Reflections Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink Grid-based Tracking in Urban Environments Using Multiple Lidars in Simulink Object Tracking and Motion Planning Using Frenet Reference Path Asynchronous Sensor Fusion and Tracking with Retrodiction Extended Target Tracking with Multipath Radar Reflections in Simulink Processor-in-the-Loop Verification of JPDA Tracker for Automotive Applications Scenario Generation from Recorded Vehicle Data Generate Lane Information from Recorded Data Lane Keeping Assist with Lane Detection Model Radar Sensor Detections Model Vision Sensor Detections Radar Signal Simulation and Processing for Automated Driving Simulate Radar Ghosts Due to Multipath Return Create Driving Scenario Programmatically Create Actor and Vehicle Trajectories Programmatically Define Road Layouts Programmatically Simulate Vehicle Parking Maneuver in Driving Scenario Automated Parking Valet Automated Parking Valet in Simulink Visualize Automated Parking Valet Using Cuboid Simulation Highway Trajectory Planning Using Frenet Reference Path Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map Code Generation for Path Planning and Vehicle Control Use HERE HD Live Map Data to Verify Lane Configurations Localization Correction Using Traffic Sign Data from HERE HD Maps Build a Map from Lidar Data Build a Map from Lidar Data Using SLAM Create Occupancy Grid Using Monocular Camera and Semantic Segmentation Lateral Control Tutorial Highway Lane Change Visual Localization in a Parking Lot Design Lane Marker Detector Using Unreal Engine Simulation Environment Select Waypoints for Unreal Engine Simulation Visualize Automated Parking Valet Using Unreal Engine Simulation Simulate Vision and Radar Sensors in Unreal Engine Environment Highway Lane Following Automate Testing for Highway Lane Following Traffic Light Negotiation Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment Lidar Localization with Unreal Engine Simulation Develop Visual SLAM Algorithm Using Unreal Engine Simulation Automatic Scenario Generation Automatic Scenario Variant Generation for Testing AEB Systems Generate Scenario from Recorded GPS and Lidar Data Highway Lane Following with RoadRunner Scene Export Multiple Scenes Using MATLAB Convert Scenes Between Formats Using MATLAB Functions Simulate a RoadRunner Scenario Using MATLAB Functions Build Simple Roads Programatically Using RoadRunner HD Map Build Pikes Peak RoadRunner 3D Scene Using RoadRunner HD Map Traffic Light Negotiation with Unreal Engine Visualization Generate Code for Lane Marker Detector Highway Lane Following with Intelligent Vehicles Forward Vehicle Sensor Fusion Generate Code for Vision Vehicle Detector Automate Testing for Lane Marker Detector Generate Code for Highway Lane Following Controller Automate Testing for Highway Lane Following Controls and Sensor Fusion Generate Code for Highway Lane Change Planner Surround Vehicle Sensor Fusion Build Occupancy Map from 3-D Lidar Data using SLAM Automate Testing for Vision Vehicle Detector Automate Testing for Forward Vehicle Sensor Fusion Automate Testing for Highway Lane Following Controller Automate Testing for Highway Lane Change Visualize Logged Data from Unreal Engine Simulation Automate Real-Time Testing for Highway Lane Following Controller Generate C++ Message Interfaces for Lane Following Controls and Sensor Fusion Automate Testing for Autonomous Emergency Braking Autonomous Emergency Braking with Vehicle Variants Automate Real-Time Testing for Forward Vehicle Sensor Fusion Highway Lane Change Planner and Controller Intersection Movement Assist Using Vehicle-to-Vehicle Communication Traffic Light Negotiation Using Vehicle-to-Everything Communication Trajectory Follower with RoadRunner Scenario Speed Action Follower with RoadRunner Scenario Highway Lane Change Planner with RoadRunner Scenario Truck Platooning Using Vehicle-to-Vehicle Communication Automate PIL Testing for Forward Vehicle Sensor Fusion Highway Lane Following with RoadRunner Scenario Autonomous Emergency Braking with RoadRunner Scenario Automate Testing for Scenario Variants of AEB System Scenario Generation Overview of Scenario Generation from Recorded Sensor Data Preprocess Input Data Extract Ego Vehicle Information Extract Scene Information Extract Non-Ego Actor Information Create, Simulate, and Export Scenario Smooth GPS Waypoints for Ego Localization Preprocess Lane Detections for Scenario Generation Improve Ego Vehicle Localization Extract Lane Information from Recorded Camera Data for Scene Generation Generate High Definition Scene from Lane Detections Extract Vehicle Track List from Recorded Camera Data for Scenario Generation Extract Vehicle Track List from Recorded Lidar Data for Scenario Generation Generate Scenario from Actor Track List and GPS Data Generate RoadRunner Scene from Recorded Lidar Data Generate RoadRunner Scenario from Recorded Sensor Data Scenario Variant Generation Overview of Scenario Variant Generation Parameter Extraction Parameter Variation Scenario Generation Generate Scenario Variants by Modifying Actor Dimensions Generate Scenario Variants for Testing ACC Systems Generate Variants of ACC Target Cut-In Scenario Generate Scenario Variants for Testing AEB Pedestrian Systems Generate Scenario Variants for Lane Keep Assist Testing