دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: illustrated edition
نویسندگان: Howard E. Boyer
سری:
ISBN (شابک) : 0871702142, 9780871702142
ناشر: Asm Intl
سال نشر: 1986
تعداد صفحات: 534
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Atlas of Fatigue Curves به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اطلس منحنی های خستگی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Matter......Page 2
Table of Contents......Page 0
Preface......Page 3
Table of Contents......Page 4
Introduction......Page 17
Fatigue Crack Initiation......Page 20
Fatigue Crack Propagation......Page 28
1.1 S-N Curves Typical for Steel......Page 43
1.2 S-N Curves Typical for Medium-Strength Steels......Page 44
1.3 S-N Diagrams Comparing Endurance Limit for Seven Alloys......Page 46
1.4 Steel: Effect of Microstructure......Page 47
1.5 Steel: Influence of Derating Factors on Fatigue Characteristics......Page 48
1.6 Steel: Correction Factors for Various Surface Conditions......Page 49
1.7 Fatigue Behavior: Ferrous vs. Nonferrous Metals......Page 50
1.8 Comparison of Fatigue Characteristics: Mild Steel vs. Aluminum Alloy......Page 51
1.9 Carbon Steel: Effect of Lead as an Additive......Page 52
1.10 Corrosion Fatigue: General Effect on Behavior......Page 53
1.11 Effect of Corrosion on Fatigue Characteristics of Several Steels......Page 54
1.12 Steel: Effect of Hydrogen on Fatigue Crack Propagation......Page 55
1.13 Relationship of Stress Amplitude and Cycles to Failure......Page 56
1.14 Strain-Life and Stress-Life Curves......Page 57
1.15 Fatigue Plot for Steel: Ultrasonic Attenuation vs. Number of Cycles......Page 58
2.1 Typical S-N Curve for Low-Carbon Steel under Axial Tension......Page 59
2.2 AISI 1006: Effects of Biaxial Stretching and Cold Rolling......Page 60
2.3 AISI 1006: Weldment; FCAW, TIG Dressed......Page 61
2.4 AISI 1006: Weldment; Shear Joints......Page 62
2.5 AISI 1006: Weldment; Lap-Shear Joints......Page 63
2.6 AISI 1015: Effect of Cold Working......Page 64
2.7 A533 Steel Plate: Fatigue Crack Growth Rate......Page 65
2.8 A514F Steel Plate: Fatigue Crack Growth Rates......Page 66
2.9 A514F and A633C: Variation in Fatigue Crack Growth Rate with Orientation......Page 67
2.10 A514F: Scatterbands of Fatigue Crack Growth Rate......Page 68
2.11 A633C Steel Plate: Scatterbands of Fatigue Crack Growth Rates......Page 69
2.12 Low-Carbon Steel Weldment: Effects of Various Weld Defects......Page 70
2.13 Low-Carbon Steel Weldment: Effect of Weld Reinforcement and Lack of Inclusions......Page 71
2.14 Low-Carbon Steel Weldment: Effect of Weld Reinforcement and Lack of Penetration......Page 72
2.15 Low-Carbon Steel Weldment: Computed Fatigue Strength; Weldment Contained Lack of Fusion......Page 73
2.16 Low-Carbon Steel Weldment: Effect of Reinforcement and Undercutting......Page 74
2.17 Low-Carbon Steel: Transverse Butt Welds; Effect of Reinforcement......Page 75
2.18 A36/E60S-3 Steel Plate: Butt Welds......Page 76
2.19 A514F/E110 Steel: Bead on Plate Weldment......Page 77
2.20 A36 and A514 Steel Plates: Butt Welded......Page 78
2.21 A36 Plate Steel: Butt Welded......Page 79
2.22 Low-Carbon Steel Tubes: Effect of Welding Technique......Page 80
2.23 Low Carbon Steel: Effect of Applied Anodic Currents in 3% NaCl......Page 81
2.24 Low-Carbon Steel: Effect of pH in NaCl and NaOH......Page 82
2.25 Low-Carbon Steel: Effect of Carburization and Decarburization......Page 83
2.26 A514B Steel: Effect of Various Gaseous Environments on Fatigue Crack Propagation......Page 84
2.27 Cast 1522 and 1541 Steels: Effect of Various Surface Conditions......Page 85
2.28 Cast A216 (Grade WCC) Steel: Fatigue Crack Growth Rate......Page 86
3.1 AISI 1030 (Cast) Compared with AISI 1020 (Wrought)......Page 87
3.2 AISI 1035: Effect of Gas and Salt Bath Nitriding......Page 88
3.3 AISI 1040: Cast vs. Wrought......Page 89
3.4 AISI 1045: Relationship of Hardness and Strain-Life Behavior......Page 90
3.5 AISI 1141: Effect of Gas Nitriding......Page 91
3.6 Medium-Carbon Steels: Interrelationship of Hardness, Strain Life and Fatigue Life......Page 92
3.7 Medium-Carbon Steel: Effect of Fillet Radii......Page 93
3.8 Medium-Carbon Steel: Effect of Keyway Design......Page 94
3.9 Medium-Carbon Steel: Effect of Residual Stresses......Page 95
3.10 Medium-Carbon Cast Steel: Effect of Changes in Residual Stress......Page 96
3.11 Medium-Carbon Cast Steel: S-N Projection (Effect of Applied Stress)......Page 97
3.12 Medium-Carbon Cast Steel: Effect of Applied Stress (Shot Blasting)......Page 98
4.1 Medium-Carbon Alloy Steels, Five Grades: Effect of Martensite Content......Page 99
4.2 Medium-Carbon Alloy Steels, Six Grades: Hardness vs. Endurance Limit......Page 100
4.3 Medium-Carbon Alloy Steels: Effect of Specimen Orientation......Page 101
4.4 4027 Steel: Carburized vs. Uncarburized......Page 102
4.5 4120 Steel: Effect of Surface Treatment in Hydrogen Environment......Page 103
4.6 4120 Steel: Effect of Surface Treatment in Hydrogen Environment......Page 104
4.7 4120 Steel: Effect of Various Surface Treatments on Fatigue Characteristics in Air vs. Hydrogen......Page 105
4.8 4130 Steel: Fatigue Crack Growth Rate vs. Temperature in Hydrogen......Page 106
4.9 4135 and 4140 Steels: Cast vs. Wrought......Page 107
4.10 4135 and 4140 Steels: Cast vs. Wrought......Page 108
4.11 4140, 4053 and 4063 Steels: Effect of Carbon Content and Hardness......Page 109
4.12 4140 Steel: Effect of Direction on Fatigue Crack Propagation......Page 110
4.13 4140 Steel: Effect of Cathodic Polarization......Page 111
4.14 Cast 4330 Steel: Effects of Various Surface Conditions......Page 112
4.15 4340 Steel: Scatter of Fatigue Limit Data......Page 113
4.16 4340 Steel: Strength vs. Fatigue Life......Page 114
4.17 4340 Steel: Total Strain vs. Fatigue Life......Page 115
4.18 4340 Steel: Stress Amplitude vs. Number of Reversals......Page 116
4.19 4340 Steel: Effect of Periodic Overstrain......Page 117
4.20 4340 Steel: Estimation of Constant Life......Page 118
4.21 4340 Steel: Effect of Strength Level on Constant-Life Behavior......Page 119
4.22 4340 Steel: Notched vs. Unnotched Specimens......Page 120
4.23 4340 Steel: Effect of Decarburization......Page 121
4.24 4340H Steel: Effect of Inclusion Size......Page 122
4.25 4340 Steel: Influence of Inclusion Size......Page 123
4.26 4340 Steel: Effect of Hydrogenation; Static Fatigue......Page 124
4.27 4340 Steel: Effect of Hydrogen......Page 125
4.28 4340 Steel: Effect of Nitriding......Page 126
4.29 4340 Steel: Effect of Nitriding and Shot Peening......Page 127
4.30 4340 Steel: Effect of Induction Hardening and Nitriding......Page 128
4.31 4340 Steel: Effect of Surface Coatings......Page 129
4.32 4340 Steel: Effect of Temperature on Constant-Lifetime Behavior......Page 130
4.33 4520H Steel: Effect of Type of Quench......Page 131
4.34 4520H Steel: Effect of Shot Peening......Page 132
4.35 4620 Steel: Effect of Nitriding......Page 133
4.36 4620 Steel: P/M-Forged......Page 134
4.37 4620 Steel: P/M-Forged at Different Levels......Page 135
4.38 4625 Steel: P/M vs. Ingot Forms......Page 136
4.39 4640 Steel: P/M-Forged......Page 137
4.40 High-Carbon Steel (Eutectoid Carbon): Pearlite vs. Spheroidite......Page 138
4.41 52100 EF Steel: Surface Fatigue; Effect of Finish and Additives......Page 139
4.42 52100 EF Steel: Surface Fatigue; Effect of Surface Finish and Speed......Page 140
4.43 52100 EF Steel: Surface Fatigue; Effect of Lubricant Additives......Page 141
4.44 52100 EF Steel: Surface Fatigue; Effect of Lubricant Viscosity, Slip Ratio and Speed......Page 142
4.45 52100 EF Steel: Rolling Ball Fatigue; Effect of Oil Additives......Page 143
4.46 52100 Steel: Carburized vs. Uncarburized......Page 144
4.47 8620H Steel: Carburized; Results from Case and Core......Page 145
4.48 8620H Steel: Effect of Variation in Carburizing Treatments......Page 146
4.49 8620 Steel: Effect of Nitriding......Page 147
4.50 8622 Steel: Effect of Grinding......Page 148
4.51 Cast 8630 Steel: Goodman Diagram for Bending Fatigue......Page 149
4.52 Cast 8630 Steel: Effect of Shrinkage......Page 150
4.53 Cast 8630 Steel: Effect of Shrinkage on Torsion Fatigue......Page 151
4.54 Cast 8630 Steel: Effect of Shrinkage on Torsion Fatigue......Page 152
4.55 Cast 8630 Steel: Effect of Shrinkage on Plate Bending......Page 153
4.56 Cast 8630 vs. Wrought 8640......Page 154
4.57 8630 and 8640 Steels: Effect of Notches on Cast and Wrought Specimens......Page 155
4.58 Nitralloy 135 Steel: Effect of Nitriding......Page 156
4.59 AMS 6475: Effects of Welding......Page 157
4.60 Medium-Carbon, 1Cr-Mo-V Forging: Effect of Cycling Frequency......Page 158
4.61 EM12 Steel: Effect of Temperature on Low-Cycle Fatigue......Page 159
4.62 Cast 0.5Cr-Mo-V Steel: Effects of Dwell Time in Elevated-Temperature Testing......Page 160
4.63 Cast 0.5Cr-Mo-V Steel: Effect of Environment at 550 °C (1022 °F)......Page 161
4.64 Cast C-0.5Mo Steel: Effect of Temperature and Dwell Period on Cyclic Endurance at Various Strain Amplitudes......Page 162
5.1 HI-FORM 50 Steel vs. 1006......Page 163
5.2 HI-FORM 50 Steel vs. 1006: Stress Response......Page 164
5.3 HI-FORM 50 Steel Compared with 1006, DP1 and DP2......Page 165
5.4 HSLA vs. Mild Steel: Torsional Fatigue......Page 166
5.5 Proprietary HSLA Steel vs. ASTM A440......Page 167
5.6 Comparison of HSLA Steel Grades BE, JF and KF for Plastic Strain Amplitude vs. Reversals to Failure......Page 168
5.7 Comparison of HSLA Steel Grades BE, JF and KF for Total Strain Amplitude vs. Reversals to Failure......Page 169
5.8 Comparison of a Dual-Phase HSLA Steel Grade with HI-FORM 50: Total Strain Amplitude vs. Reversals to Failure......Page 170
5.9 AISI 50 XF Steel: Effects of Cold Deformation......Page 171
5.10 AISI 80 DF Steel: Effects of Cold Deformation......Page 172
5.11 Comparison of Three HSLA Steel Grades, Cb, Cb-V and Cb-V-Si: Strain Life from Constant Amplitude......Page 173
5.12 Comparison of Stress Responses: DP1 vs. DP2 Dual-Phase HSLA Steels......Page 174
5.13 Dual-Phase HSLA Steel Grade: Stress Response for As-Received vs. Water-Quenched......Page 175
5.14 Dual-Phase HSLA Steel Grade: Stress Response for As-Received vs. Gas-Jet-Cooled......Page 176
5.15 S-N Comparison of Dual-Phase HSLA Steel Grades DP1 and DP2 with 1006......Page 177
5.16 Comparison of Dual-Phase HSLA Steel DP2 with HI-FORM 50......Page 178
5.17 Comparison of Cyclic Strain Response Curves for Cb, Cb-V, and Cb-V-Si Grades of HSLA Steel......Page 179
5.18 Fatigue Crack Propagation Rate: Effect of Temperature for Two HSLA Steel Grades......Page 180
5.19 Effect of R-Ratio and Test Temperature on Crack Propagation of HSLA Steel Grade 1......Page 181
5.20 Effect of Test Temperature on Fatigue Crack Propagation Behavior for Two HSLA Steel Grades......Page 182
5.21 Stress-Cycle Curves for Weldments of Different HSLA Steel Grades......Page 183
5.22 Weldments (FCAW): SAE 980 X Steel vs. 1006......Page 184
5.23 Weldments (TIG): DOMEX 640 XP Steel Welded Joints vs. Parent Metal......Page 185
5.24 Weldments (FCAW Dressed by TIG): Fatigue Life Estimates Compared with Experimental Data for SAE 980 X Steel......Page 186
5.25 SAE 980 X Steel Weldment (FCAW): Smooth Specimen vs. TIG-Dressed vs. As-Welded......Page 187
5.26 SAE 980 X Steel Weldment (FCAW): Lap-Shear Joints......Page 188
5.27 Microalloyed HSLA Steels: Properties of Fusion Welds......Page 189
5.28 Microalloyed HSLA Steels: Properties of Spot Welds......Page 190
6.1 HY-130 Steel: Effect of Notch Radii......Page 192
6.2 300 M Steel: Effect of Notch Severity on Constant-Lifetime Behavior......Page 193
6.3 TRIP Steels Compared with other High-Strength Grades......Page 194
6.4 Corrosion Fatigue: Special High-Strength Sucker-Rod Material......Page 195
6.5 Corrosion Fatigue Cracking of Sucker-Rod Material......Page 196
6.6 Hydrogenated Steel: Effect of Baking Time on Hydrogen Concentration......Page 197
6.7 Hydrogenated Steel: Effect of Notch Sharpness......Page 198
7.1 0.5%Mo Steel: Effect of Hold Time in Air and Vacuum at Different Temperatures......Page 199
7.2 DIN 14 Steel (1.5 Cr, 0.90 Mo, 0.25 V): Effect of Liquid Nitriding......Page 200
7.3 2.25Cr-1.0Mo Steel: Influence of Cyclic Strain Range on Endurance Limit in Various Environments......Page 201
7.4 2.25Cr-1.0Mo Steel: Effect of Elevated Temperature......Page 202
7.5 2.25Cr-1.0Mo Steel: Effect of Elevated Temperature and Strain Rate......Page 203
7.6 2.25Cr-1.0Mo Steel: Effect of Temperature on Fatigue Crack Growth Rate......Page 204
7.7 2.25Cr-1.0Mo Steel: Effect of Cyclic Frequency on Fatigue Crack Growth Rate......Page 205
7.8 2.25Cr-1.0Mo Steel: Fatigue Crack Growth Rates in Air and Hydrogen......Page 206
7.9 2.25Cr-1.0Mo Steel: Effect of Holding Time......Page 207
7.10 Cast 2.25Cr-1.0Mo Steel, Centrifugally Cast: Fatigue Properties at 540 °C (1000 °F)......Page 208
7.11 H11 Steel: Crack Growth Rate in Water and in Water Vapor......Page 209
7.12 9.0Cr-1.0Mo Steel: Creep-Fatigue Characteristics......Page 210
7.13 9.0Cr-1.0Mo Modified Steel: Stress Amplitudes Developed in Cycling......Page 211
7.14 9.0Cr-1.0Mo Modified Steel: Effect of Deformation......Page 212
8.1 Type 301 Stainless Steel: Scatter Band for Fatigue Crack Growth Rates......Page 213
8.2 Type 301 Stainless Steel: Effects of Temperature and Environment on Fatigue Crack Growth Rate......Page 214
8.3 Type 304 Stainless Steel: Effect of Temperature on Frequency-Modified Strains......Page 215
8.4 Type 304 Stainless Steel: Fatigue Crack Growth Rate - Annealed and Cold Worked......Page 216
8.5 Type 304 Stainless Steel: Effect of Humidity on Fatigue Crack Growth Rate......Page 217
8.6 Type 304 Stainless Steel: Effect of Aging on Fatigue Crack Growth Rate......Page 218
8.7 Type 304 Stainless Steel: Effect of Temperature on Fatigue Crack Growth Rate......Page 219
8.8 Type 304 Stainless Steel: Damage Relation at 650 °C (1200 °F)......Page 220
8.9 Type 304 Stainless Steel: Fatigue Crack Growth Rate at Room and Subzero Temperatures......Page 221
8.10 Types 304 and 304L Stainless Steel: Effect of Cryogenic Temperatures on Fatigue Crack Growth Rate......Page 222
8.11 Type 304 Stainless Steel: Fatigue Crack Growth Rate in Air with Variation in Waveforms......Page 223
8.12 Type 304 Stainless Steel: Effect of Hold Time on Cycles to Failure......Page 224
8.13 Type 304 Stainless Steel: Effect of Hold Time and Continuous Cycling on Fatigue Crack Growth Rates......Page 225
8.14 Type 304 Stainless Steel: Effect of Cyclic Frequency on Fatigue Crack Growth Rate......Page 226
8.15 Type 304 Stainless Steel: Effect of Frequency on Fatigue Crack Growth Behavior......Page 227
8.16 Type 304 Stainless Steel Welded with Type 308: Fatigue Crack Growth Rates......Page 228
8.17 Types 304 and 310 Stainless Steel: Effect of Direction on S-N......Page 229
8.18 Types 304, 316, 321, and 348 Stainless Steel: Effects of Temperature on Fatigue Crack Growth Rates......Page 230
8.19 Type 309S Stainless Steel: Effect of Grain Size on Fatigue Crack Growth Rate......Page 231
8.20 Type 310S Stainless Steel: Effect of Temperature on Fatigue Crack Growth Rate......Page 232
8.21 Type 316 Stainless Steel: Growth Rate of Fatigue Cracks in Weldments......Page 233
8.22 Type 316 Stainless Steel: Fatigue Crack Growth Rates - Aged vs. Unaged......Page 234
8.23 Type 316 Stainless Steel: Fatigue Crack Growth Rates - Effect of Aging......Page 235
8.24 Type 316 Stainless Steel: Effect of Temperature on Fatigue Crack Growth Rate......Page 236
8.25 Type 316 Stainless Steel: Effect of Cyclic Frequency on Fatigue Crack Growth Rate......Page 237
8.26 Type 316 Stainless Steel: Fatigue Crack Growth Rate in the Annealed Condition......Page 238
8.27 Type 316 Stainless Steel: Effect of Environment (Sodium, Helium, and Air) on Cycles to Failure......Page 239
8.28 Types 316 and 321 Stainless Steel: Effects of Gaseous Environments on Fatigue Crack Growth Rates......Page 240
8.29 Type 321 Stainless Steel: Effect of Hold Time on Fatigue Crack Growth Rates......Page 241
8.30 Type 403 Stainless Steel: Effect of Environment on Fatigue Crack Growth Rate......Page 242
8.31 Type 403 Modified Stainless Steel: Scatter of Fatigue Crack Growth Rates......Page 243
8.32 Type 422 Stainless Steel: Fatigue Crack Growth Rates in Precracked Specimens......Page 244
8.33 Type 422 Stainless Steel: Fatigue Strength - Longitudinal vs. Transverse......Page 245
8.34 Type 422 Stainless Steel: Effect of Temperature on Fatigue Strength......Page 246
8.35 Type 422 Stainless Steel: Effects of Delta Ferrite on Fatigue Strength......Page 247
8.36 17-4 PH Stainless Steel: Fatigue Crack Growth Rates in Air vs. Salt Solution......Page 248
8.37 15-5 PH Stainless Steel: Fatigue Crack Growth Rates in Air vs. Salt Solution......Page 249
8.38 PH 13-8 Mo Stainless Steel: Fatigue Crack Growth Rates at Room Temperature......Page 250
8.39 PH 13-8 Mo Stainless Steel: Fatigue Crack Growth Rates in Air and Sump Tank Water......Page 251
8.40 PH 13-8 Mo Stainless Steel: Fatigue Crack Growth Rates at Subzero Temperatures......Page 252
8.41 PH 13-8 Mo Stainless Steel: Constant-Life Fatigue Diagram......Page 253
8.42 Types 600 and 329 Stainless Steel: S-N Curves for Two Processing Methods......Page 254
8.43 Grade 21-6-9 Stainless Steel: Effect of Temperature on Fatigue Crack Growth Rates......Page 255
8.44 Kromarc 58 Stainless Steel: Effect of Cryogenic Temperatures on Weldments......Page 256
8.45 Pyromet 538 Stainless Steel: Effects of Welding Methods on Fatigue Crack Growth Rates......Page 257
8.46 Duplex Stainless Steel KCR 171: Corrosion Fatigue......Page 258
9.1 Grades 200, 250, and 300 Maraging Steel: S-N Curves for Smooth and Notched Specimens......Page 259
9.2 Grade 300 Maraging Steel: Fatigue Life in Terms of Total Strain......Page 260
11.1 A286: Effect of Environment......Page 288
11.2 A286: Effect of Frequency on Life at 593 °C (1095 °F)......Page 289
11.3 A286: Fatigue Crack Growth Rates at Room and Elevated Temperatures......Page 290
11.4 Astroloy: S-N Curves for Powder vs. Conventional Forgings......Page 291
11.5 Astroloy: Powder vs. Conventional Forgings Tested at 705 °C (1300 °F)......Page 292
11.6 FSX-430: Effect of Grain Size on Cycles to Cracking......Page 293
11.7 FSX-430: Effect of Grain Size on Fatigue Crack Propagation Rate......Page 294
11.8 HS-31: Effect of Testing Temperature......Page 295
11.9 IN 738 LC Casting Alloy: Standard vs. HIP'd Material......Page 296
11.10 IN 738 LC: Effect of Grain Size on Cycles to Failure......Page 297
11.11 IN 738 LC: Effect of Grain Size on Cycles to Cracking......Page 298
11.12 IN 738 LC: Effect of Grain Size on Crack Propagation Rate......Page 299
11.13 IN 738 LC: Fatigue Crack Growth Rate at 850 °C (1560 °F)......Page 300
11.14 Inconel 550: Axial Tensile Fatigue Properties in Air and Vacuum at 1090 K......Page 301
11.15 Inconel 625: Effect of Temperature on Cycles to Failure......Page 302
11.16 Inconel 706: Effect of Temperature on Fatigue Crack Growth Rate......Page 303
11.17 Inconel "713C": Effect of Elevated Temperatures on Fatigue Characteristics......Page 304
11.18 Inconel "713C" and As-Cast HS-31: Comparison of Two Alloys for Number of Cycles in Thermal Fatigue to Initiate Cracks......Page 305
11.19 Inconel 718: Effect of Frequency on Fatigue Crack Propagation Rate......Page 306
11.20 Inconel 718: Relationship of Fatigue Crack Propagation Rate with Stress Intensity......Page 307
11.21 Inconel 718: Relationship of Fatigue Crack Growth Rate with Load/Time Waveforms......Page 308
11.22 Inconel 718: Fatigue Crack Growth Rate in Air vs. Helium......Page 309
11.23 Inconel 718: Effect of Environment on Fatigue Crack Growth Rate......Page 310
11.24 Inconel 718: Fatigue Crack Growth Rate in Air Plus 5% Sulfur Dioxide......Page 311
11.25 Inconel 718: Fatigue Crack Growth Rate in Air at Room Temperature......Page 312
11.26 Inconel 718: Fatigue Crack Growth Rate in Air at 316 °C (600 °F)......Page 313
11.27 Inconel 718: Fatigue Crack Growth Rate in Air at 427 °C (800 °F)......Page 314
11.28 Inconel 718: Fatigue Crack Growth Rate in Air at 538 °C (1000 °F)......Page 315
11.29 Inconel 718: Fatigue Crack Growth Rate in Air at 649 °C (1200 °F)......Page 316
11.30 Inconel 718: Fatigue Crack Growth Rates at Cryogenic Temperatures......Page 317
11.31 Inconel 718 and X-750: Fatigue Crack Growth Rates at Cryogenic Temperatures......Page 318
11.32 Inconel X-750: Effect of Temperature on Fatigue Crack Growth Rates......Page 319
11.33 Jethete M 152: Interrelationship of Tempering Treatment, Alloy Class, and Testing Temperature with Fatigue Characteristics......Page 320
11.34 Lapelloy: Interrelationship of Hardness and Strength with Fatigue Characteristics......Page 321
11.35 Mar-M200: Effect of Atmosphere on Cycles to Failure......Page 322
11.36 Mar-M509: Correlation of Initial Crack Propagation and Dendrite Arm Spacing......Page 323
11.37 Mar-M509: Correlation between Number of Cycles Required to Initiate a Crack and Dendrite Arm Spacing......Page 324
11.38 MERL 76, P/M: Axial Low-Cycle Fatigue Life of As-HIP'd Alloy at 540 °C (1000 °F)......Page 325
11.39 Nickel-Base Alloys: Effect of Solidification Conditions on Cycles to Onset of Cracking......Page 326
11.40 René 95 (As-HIP): Cyclic Crack Growth Behavior under Continuous and Hold-Time Conditions......Page 327
11.41 René 95: Effect of Temperature on Fatigue Crack Growth Rate......Page 328
11.42 S-816: Effect of Notches on Cycles to Failure at 900 °C (1650 °F)......Page 329
11.43 Udimet 700: Fatigue Crack Growth Rates at 850 °C (1560 °F)......Page 330
11.44 U-700 and Mar-M200: Comparison of Fatigue Properties......Page 331
11.45 Waspaloy: Stress-Response Curves......Page 332
11.46 X-40: Effect of Grain Size and Temperature on Fatigue Characteristics......Page 333
11.47 Cast Heat-Resisting Alloys: Ranking for Resistance to Thermal Fatigue......Page 334
12.1 Corrosion-Fatigue Properties of Aluminum Alloys Compared with Those of other Alloys......Page 335
12.2 Comparisons of Aluminum Alloys with Magnesium and Steel: Tensile Strength vs. Endurance Limit......Page 336
12.3 Aluminum Alloys (General): Yield Strength vs. Fatigue Strength......Page 337
12.4 Comparison of Aluminum Alloy Grades for Crack Propagation Rate......Page 338
12.5 Alloy 1100: Relationship of Fatigue Cycles and Hardness for H0 and H14 Tempers......Page 339
12.6 Alloy 1100: Interrelationship of Fatigue Cycles, Acoustic Harmonic Generation and Hardness......Page 340
12.7 Alloy 2014-T6: Notched vs. Unnotched Specimens; Effect on Cycles to Failure......Page 341
12.8 Alloy 2024-T3: Effect of Air vs. Vacuum Environments on Cycles to Failure......Page 342
12.9 Alloy 2024-T4 Alclad Sheet: Effect of Bending on Cycles to Failure......Page 343
12.10 Alloy 2024-T4: High-Cycle vs. Low-Cycle Fatigue......Page 344
12.11 Alloy 2024-T4: Relationship of Stress and Fatigue Cycles......Page 345
12.12 Alloy 2024-T4: Dependence of the Average Rocking Curve Halfwidth beta on Distance from the Surface......Page 346
12.13 Alloys 2024 and X2024: Effect of Alloy Purity on Cycles to Failure......Page 347
12.14 Alloys 2024 and 2124: Relationship of Particle Size and Fatigue Characteristics......Page 348
12.15 Alloys 2024-T4 and 2124-T4: Comparison of Resistance to Fatigue Crack Initiation......Page 349
12.16 Alloys 2024-T3 and 7075-T6: Summary of Fatigue Crack Growth Rates......Page 350
12.17 Alloys 2024-T4 and 7075-T6: Effect of Product Form and Notches......Page 351
12.18 Alloys 2024-T351 and 7075-T73XXX: Comparison of P/M Extrusions and Rod......Page 352
12.19 Alloy 2048-T851: Longitudinal vs. Transverse for Axial Fatigue......Page 353
12.20 Alloy 2048-T851: Notched vs. Unnotched Specimens at Room and Elevated Temperatures......Page 354
12.21 Alloy 2048-T851: Fatigue Crack Propagation Rates in LT and TL Orientations......Page 355
12.22 Alloy 2048-T851: Modified Goodman Diagram for Axial Fatigue......Page 356
12.23 Alloy 2219-T851: Dependence of Relaxation Behavior on the Cyclic Hardening Parameter......Page 357
12.24 Alloy 2219-T851: Effect of Strain Amplitude on the Relaxation of Residual Surface Stress with Fatigue......Page 358
12.25 Alloy 2219-T851 : Relationship of Fatigue Cycles to Different Depth Distributions of Surface Stress......Page 359
12.26 Alloy 2219-T851: Probability of Fatigue Failure......Page 360
12.27 Alloys 3003-O, 5154-H34 and 6061-T6: Effect of Alloy on Fatigue Characteristics of Weldments......Page 361
12.28 Alloy 5083-O Plate: Effect of Orientation on Fatigue Crack Growth Rates......Page 362
12.29 Alloy 5083-O Plate: Effect of Temperature and Humidity on Fatigue Crack Growth Rates......Page 363
12.30 Alloys 5086-H34, 5086-H36, 6061-T6, 7075-T73 and 2024-T3: Comparative Resistance to Axial-Stress Fatigue......Page 364
12.31 Alloys 5083-O/5183: Fatigue Life Predictions and Experimental Data Results for Double V-Butt Welds......Page 365
12.32 Alloys 5083-O/5183: Predicted Effect of Stress Relief and Stress Ratio on Fatigue Life of Butt Welds......Page 366
12.33 7XXX Alloys: Cyclic Strain vs. Crack Initiation Life......Page 367
12.34 Alloy 7050: Influence of Alloy Composition and Dispersoid Effect on Mean Calculated Fatigue Life......Page 368
12.35 Alloy 7050: Effect of Grain Shape on Cycles to Failure......Page 369
12.36 Alloy 7075 (TMP T6 and T651): Effect of Thermomechanical Processing on Cycles to Failure......Page 370
12.37 Alloys 7075 and 7475: Effect of Inclusion Density on Cycles to Failure......Page 371
12.38 Alloy 7075: Effect of TMT on Cycles to Failure......Page 372
12.39 Alloys 7075 and 7050: Relative Ranking for Constant Amplitude and Periodic Overload......Page 373
12.40 Alloy 7075: Effect of Environment and Mode of Loading......Page 374
12.41 Alloy 7075-T6: Effects of Corrosion and Pre-Corrosion......Page 375
12.42 Alloy 7075-T73: Effect of a 3.5% NaCl Environment on Cycles to Failure......Page 376
12.43 Alloy 7075: Effect of Cathodic Polarization on Fatigue Behavior......Page 377
12.44 Alloy 7075-T6: Effect of Surface Treatments and Notch Designs on Number of Cycles to Failure......Page 378
12.45 Alloy 7075-T6: Effect of R-Ratio on Fatigue Crack Propagation......Page 380
12.46 Alloy 7075: Effect of Predeformation on Fatigue Crack Propagation Rates......Page 381
12.47 Alloys 7075 and 2024-T3: Comparative Fatigue Crack Growth Rates for Two Alloys in Varying Humidity......Page 382
12.48 Alloy 7075-T651: Fatigue Life as Related to Harmonic Generation......Page 383
12.49 Alloys 7075-T6 and 7475-T73: Effect of Laser-Shock Treatment on Fatigue Properties......Page 384
12.50 Alloy 7075-T6: Effect of Laser-Shock Treatment on Hi-Lok Joints......Page 385
12.51 Alloy 7075 (High Purity): Effect of Iron and Silicon on Cycles to Failure......Page 386
12.52 Alloy X-7075: Effect of Grain Size on Cycles to Failure......Page 387
12.53 Alloy X-7075: Effect of Grain Size on Stress-Life Behavior......Page 388
12.54 Alloy X-7075: Effect of Environment; Air vs. Vacuum......Page 389
12.55 Alloy X-7075: Effect of Environment on Two Different Grain Sizes......Page 390
12.56 Alloy X-7075: Effect of Grain-Boundary Ledges on Cycles to Failure......Page 391
12.57 Alloys X-7075 and 7075: Effects of Chromium Inclusions on Fatigue Crack Propagation......Page 392
12.58 Alloy 7475-T6: S-N Diagram for a Superplastic Fine-Grain Alloy......Page 393
12.59 Alloy 7475: Effect of Alignment of Grain Boundaries on Cycles to Failure......Page 394
12.60 Alloy 7475-T6: Superplastic vs. Nonsuperplastic, as Related to Fatigue Crack Growth......Page 395
12.61 Alloys X-7075 and 7075: Effect of Chromium-Containing Inclusions on Cycles to Failure......Page 396
12.62 Aluminum Forging Alloys: Stress Amplitude vs. Reversals to Failure......Page 397
12.63 Al-5Mg-0.5Ag: Effect of Condition on Fatigue Characteristics......Page 398
12.64 Al-Zn-Mg and Al-Zn-Mg-Zr: Effect of Grain Size on Strain-Life Behavior......Page 399
12.65 Al-Zn-Mg: Strain-Life Curves of a Large-Grained Alloy......Page 400
12.66 Aluminum with a Copper Overlay: Stress Amplitude vs. Cycles to Failure......Page 401
12.67 P/M Alloys 7090 and 7091 vs. Extruded 2024......Page 402
12.68 P/M Alloys 7090 and 7091 vs. I/M 7050 and 7075 Products......Page 403
12.69 P/M Aluminum Alloys: Typical Fatigue Behavior......Page 404
12.70 P/M Aluminum Alloys: Comparison with Specimens Made by Ingot Metallurgy......Page 405
12.71 P/M Aluminum Alloys: Comparison with Forged 7175 for Cycles to Failure......Page 406
12.72 Various Aluminum Alloys: Comparison of Grades for Corrosion-Fatigue Crack Growth Rates; Air vs. Salt Water......Page 407
12.73 Various Aluminum Alloys: Comparison of Grades for Corrosion-Fatigue Crack Growth Rates in Salt Water......Page 408
12.74 Various Aluminum Alloys: Wrought vs. Cast, and Influence of Casting Method on Fatigue Life......Page 409
12.75 Aluminum Casting Alloy AL-195: Interrelationship of Fatigue Properties with Degree of Porosity......Page 410
12.76 Aluminum Casting Alloy LM25-T6: Squeeze Formed vs. Chill Cast; Effect on Reversals to Failure......Page 411
13.1 Copper: Effect of Air and Water Vapor on Cycles to Failure......Page 412
13.2 Copper: Applied Plastic-Strain Amplitude vs. Fatigue Life......Page 413
13.3 Copper Alloy C11000 (ETP Wire): Effect of Temperature on Fatigue Strength......Page 414
13.4 Copper Alloy C26000 (Cartridge Brass): Influence of Grain Size and Cold Work on Cycles to Failure......Page 415
13.5 Copper Alloy C83600 (Leaded Red Brass): S-N Curves; Scatter Band......Page 416
13.6 Copper Alloy C86500 (Manganese Bronze): S-N Curves; Scatter Band......Page 417
13.7 Copper Alloys C87500 and C87800 (Silicon Brasses): S-N Curves; Scatter Band......Page 418
13.8 Copper Alloy C92200 (Navy "M" Bronze): S-N Curves; Scatter Band......Page 419
13.9 Copper Alloy C93700 (High-Leaded Tin Bronze): S-N Curves; Scatter Band......Page 420
13.10 Copper Alloy No. 192: Effect of Salt Spray on Tubes......Page 421
13.11 Copper Alloy 955: Goodman-Type Diagram......Page 422
14.1 Magnesium Casting Alloy QE22A-T6: Effects of Notches and Testing Temperature......Page 423
14.2 Magnesium Casting Alloy QH21A-T6: S-N Curves; Effects of Notches and Testing Temperature......Page 424
14.3 Mg-Al-Zn Casting Alloys: Effects of Surface Conditions on Fatigue Properties......Page 425
15.1 Molybdenum: Fatigue Limit Ratio vs. Temperature......Page 426
16.1 Tin-Lead Soldering Alloy: S-N Data for Soldered Joints......Page 427
16.2 Babbitt: Variation of Bearing Life with Babbitt Thickness......Page 428
16.3 SAE12 Bearing Alloy: Effect of Temperature on Fatigue Life......Page 429
17.1 Unalloyed Titanium, Grade 3: S-N Curves for Annealed vs. Cold Rolled......Page 430
17.2 Unalloyed Titanium, Grade 4: S-N Curves for Three Testing Temperatures......Page 431
17.3 Ti-24V and Ti-32V: Stress Amplitude vs. Cycles to Failure......Page 432
17.4 Ti-5Al-2.5Sn: Effects of Notches and Types of Surface Finish......Page 433
17.5 Ti-5Al-2.5Sn and Ti-6Al-4V: Fatigue Crack Growth Rates......Page 434
17.6 Ti-6Al-6V-2Sn: Effects of Machining and Grinding......Page 435
17.7 Ti-6Al-6V-2Sn (HIP): S-N Curves for Titanium Alloy Powder Consolidated by HIP......Page 436
17.8 Ti-6Al-6V-2Sn (HIP): S-N Curves for Annealed Plate vs. HIP......Page 437
17.9 Ti-6Al-2Sn-4Zr-2Mo: Bar Chart Presentation on Effects of Machining and Grinding......Page 438
17.10 Ti-6Al-2Sn-4Zr-2Mo: Constant-Life Fatigue Diagram......Page 439
17.11 Ti-6Al-2Sn-4Zr-6Mo: Low-Cycle Axial Fatigue Curves......Page 440
17.12 Ti-8Mo-2Fe-3Al: S-N Curves; Solution Treated and Aged Condition......Page 441
17.13 Ti-10V-2Fe-3Al: S-N Curves; Notched vs. Unnotched Specimens in Axial Fatigue......Page 442
17.14 Ti-10V-2Fe-3Al and Ti-6Al-4V: Comparison of Fatigue Crack Growth Rates......Page 443
17.15 Ti-10V-2Fe-3Al: S-N Curve; Notched Bar Fatigue Life for a Series of Forgings Compared with Ti-6Al-4V Plate......Page 444
17.16 Ti-13V-11 Cr-3Al: Constant-Life Fatigue Diagrams......Page 445
17.17 Ti-6Al-4V: Effect of Condition and Notches on Fatigue Characteristics......Page 446
17.18 Ti-6Al-4V: Effect of Direction on Endurance......Page 447
17.19 Ti-6Al-4V: Effect of Isothermally Rolled vs. Extruded Material on Cycles to Failure......Page 448
17.20 Ti-6Al-4V: Comparison of Wrought vs. Isostatically Pressed Material for Cycles to Failure......Page 449
17.21 Ti-6Al-4V: Effect of Fretting and Temperature on Cycles to Failure......Page 450
17.22 Ti-6Al-4V (Beta Rolled): Effect of Finishing Operations on Cycles to Failure......Page 451
17.23 Ti-6Al-4V: Effect of Yield Strength on Stress-Life Behavior......Page 452
17.24 Ti-6Al-4V: Effect of Stress Relief on Cycles to Failure......Page 453
17.25 Ti-6Al-4V: Interrelationship of Machining Practice and Cutting Fluids on Cycles to Failure......Page 454
17.26 Ti-6Al-4V: Relative Effects of Machining and Grinding Operations on Endurance Limit......Page 455
17.27 Ti-6Al-4V: Effects of Various Metal Removal Operations on Endurance Limit......Page 456
17.28 Ti-6Al-4V: Effect of Texture on Fatigue Strength......Page 457
17.29 Ti-6Al-4V: Effect of Complex Texture on Cycles to Failure......Page 458
17.30 Ti-6Al-4V: Effect of Texture and Environment on Cycles to Failure......Page 459
17.31 Ti-6Al-4V: Fatigue Crack Growth Rates......Page 460
17.32 Ti-6Al-4V: Fatigue Crack Growth Rates for ISR Tee, and Extrusions......Page 461
17.33 Ti-6Al-4V: Fatigue Crack Growth Rates......Page 462
17.34 Ti-6Al-4V: Effect of Final Cooling on Fatigue Crack Growth Rates......Page 463
17.35 Ti-6Al-4V: Effect of Dwell Time on Fatigue Crack Growth Rates......Page 464
17.36 Ti-6Al-4V: Fatigue Crack Growth Data......Page 465
17.37 Ti-6Al-4V P/M: Comparison of HIP'd Material with Alpha-Beta Forgings for Cycles to Failure......Page 466
17.38 Ti-6Al-4V P/M: Comparisons of HIP'd Material with Annealed Plate for Cycles to Failure......Page 467
17.39 Ti-6Al-4V P/M: Effect of Powder Mesh Size on Fatigue Properties......Page 468
17.40 Ti-6Al-4V P/M: Comparison of Blended Elemental, Prealloyed and Wrought Material for Effect on Cycles to Failure......Page 469
17.41 Ti-6Al-4V: P/M Compacts vs. I/M Specimens: Cycles to Failure......Page 470
17.42 Ti-6Al-4V: Comparison of Specimens Processed by Various Fabrication Processes for Cycles to Failure......Page 471
17.43 Ti-6Al-4V: Comparison of Fatigue Crack Growth Rate, P/M vs. I/M......Page 472
17.44 Ti-6Al-4V: Base Metal vs. SSEB-Welded Material for Cycles to Failure......Page 473
17.45 Ti-6Al-4V: Base Metal vs. SSEB-Welded Material for Cycles to Failure......Page 474
17.46 Ti-6Al-4V EB Weldments: Base Metal Compared with Flawless Weldments......Page 475
17.47 Ti-6Al-4V EB Weldments: Effects of Porosity on Cycles to Failure......Page 476
17.48 Ti-6Al-4V Gas Metal-Arc Weldments: Effects of Porosity on Cycles to Failure......Page 477
17.49 Ti-6Al-4V: Unwelded vs. Electron Beam Welded Material for Cycles to Failure......Page 478
17.50 Ti-6Al-4V: S-N Diagram for Laser-Welded Sheet......Page 479
17.51 Ti-6Al-4V (Cast): S-N Diagram for Notched Specimens......Page 480
18.1 Zirconium 702: Effects of Notches and Testing Temperature on Cycles to Failure......Page 481
19.1 Steel Castings (General): Effect of Design and Welding Practice on Fatigue Characteristics......Page 482
19.2 Steel Castings (General): Effects of Discontinuities on Fatigue Characteristics......Page 483
20.1 Closed-Die Steel Forgings: Effect of Surface Condition on Fatigue Limit......Page 484
21.1 P/M: Relation of Density to Fatigue Limit and Fatigue Ratio......Page 485
21.2 P/M: Relation of Fatigue Limit to Tensile Strength for Sintered Steels......Page 486
21.3 P/M (Nickel Steels): As-Sintered vs. Quenched and Tempered for Cycles to Failure......Page 487
21.4 P/M (Nickel Steels): Relation between Fatigue Limit and Tensile Strength for Sintered Steels......Page 488
21.5 P/M (Nickel Steels): Effect of Notches on Cycles to Failure for the As-Sintered Condition......Page 489
21.6 P/M (Nickel Steels): Effect of Notches on Cycles to Failure for the Quenched and Tempered Condition......Page 490
21.7 P/M (Low-Carbon, 1-5%Cu): Effects of Notches and Nitriding on Cycles to Failure......Page 491
21.8 P/M (Sintered Iron, Low-Carbon, No Copper): Effect of Density and Nitriding on Cycles to Failure......Page 492
21.9 P/M: Effect of Nitriding on Ductile Iron and Sintered Iron (3%Cu) for Cycles to Failure......Page 493
22.1 Brass/Mild Steel Composite: Comparison of Brass-Clad Mild Steel with Brass and Mild Steel for Cycles to Failure......Page 494
22.2 Stainless Steel/Mild Steel Composite: Comparison of Stainless-Clad Mild Steel with Stainless Steel and Mild Steel for Cycles to Failure......Page 495
23.1 Carbon and Alloy Steels (Seven Grades): Effects of Nitrocarburizing on Fatigue Strength......Page 496
23.2 Carbon and Alloy Steels (Seven Grades): Effects of Tufftriding on Fatigue Characteristics......Page 497
23.3 Carbon and Alloy Steels (Six Grades): Effects of Nitriding on Fatigue Strength......Page 498
23.4 Carbon-Manganese Steel: Effects of Nickel Coating on Fatigue Strength......Page 499
24.1 Coil Springs, Music Wire (Six Sizes): Data Presented by Means of a Goodman Diagram......Page 500
24.2 Coil Springs: S-N Data for Oil-Tempered and Music Wire Grades......Page 501
24.3 Coil Springs: Effects of Shot Peening on Cycles to Failure......Page 502
24.4 Coil Springs, 8650 and 8660 Steels: Relation of Design Stresses and Probability of Failure......Page 503
24.5 Coil Springs, HSLA Steels: Effects of Corrosion on Cycles to Failure......Page 504
24.6 Leaf Springs, 5160 Steel: Maximum Applied Stress vs. Cycles to Failure......Page 505
24.7 Front Suspension Torsion Bar Springs, 5160H Steel: Distribution of Fatigue Results for Simulated Service Testing......Page 506
24.8 Gears, Carburized Low-Carbon Steel: Relation of Life Factor to Required Life......Page 507
24.9 Gears, Carburized Low-Carbon Steel: Bending Stress vs. Cycles to Failure......Page 508
24.10 Gears, Carburized Low-Carbon Steel: Effect of Shot Peening on Cycles to Failure......Page 509
24.11 Gears, Carburized Low-Carbon Steel: Probability-Stress-Life Design Curves......Page 510
24.12 Gears, 8620H Carburized: Bending or Contact Stress vs. Cycles to Fracture or Pitting......Page 511
24.13 Gears, 8620H Carburized: A Weibull Analysis of Bending Fatigue Data......Page 512
24.14 Gears, 8620H Carburized: T-N Curves for Six-Pinion, Four-Square Tests......Page 513
24.15 Hypoid Gears, 8620H Carburized: Minimum Confidence Level; Stress vs. Cycles to Rupture......Page 514
24.16 Hypoid, Zerol and Spiral Bevel Gears, 8620H Carburized: S-N Scatter Band and Minimum Confidence Level......Page 515
24.17 Spiral Bevel and Zerol Bevel Gears, 8620H Carburized: S-N Scatter Band and Minimum Confidence Level......Page 516
24.18 Gears, 8620H Case Hardened: Relation of Life Factor to Cycles to Rupture......Page 517
24.19 Bevel Gears, Low-Carbon Steel Case Hardened: Relation of Life Factor to Cycles to Rupture for Various Confidence Levels......Page 518
24.20 Gears, AMS 6265: S-N Data for Cut vs. Forged......Page 519
24.21 Spur Gears, 8620H: S-N Data for Cut vs. Forged......Page 520
24.22 Gears and Pinions: P/M 4600V vs. 4615; Weibull Distributions......Page 521
24.23 Gears and Pinions: P/M Grades 4600V and 2000 vs. 4615; Percent Failure vs. Time......Page 522
24.24 Gear Steel AMS 6265: Parent Metal vs. Electron Beam Welded......Page 523
24.25 Gears, 42 CrMo4 (German Specification): S-N Curves for Various Profiles......Page 524
24.26 Gears, 42 CrMo4 (German Specification): Endurance Test Results in the Weibull Distribution Diagram......Page 525
24.27 Bolts, 1040 and 4037 Steels: Maximum Bending Stress vs. Number of Stress Cycles......Page 526
24.28 Bolts: S-N Data for Roll Threading before and after Heat Treatment......Page 527
24.29 Power Shafts, AMS 6382 and AMS 6260: Electron Beam Welded vs. Silver Brazed Joints......Page 528
24.30 Axle Shafts, 1046, 1541 and 50B54 Steels: S-N Data for Induction Hardening vs. Through Hardening......Page 529
24.31 Steel Rollers, 8620H Carburized: Effects of Carburizing Temperature and Quenching Practice on Surface Fatigue......Page 530
24.32 Steel Rollers, 8620H Carburized: Effects of Carburizing Temperature and Quenching Practice on Surface Fatigue......Page 531
24.33 Linkage Arm, Cast Low-Carbon Steel: Starting Crack Size vs. Cycles to Failure......Page 532
24.34 Notched Links, Hot Rolled Low-Carbon Steel: S-N Data for Component Test Model......Page 533
24.35 Fuselage Brace, Ti-6Al-6V-2Sn: Fatigue Endurance of HIP-Consolidated Powder......Page 534
10.1 Fatigue of Cast Irons as a Function of Structure-Sensitive Parameters......Page 261
10.2 Gray Iron: Fatigue Life, and Fatigue Limit as a Function of Temperature......Page 262
10.3 Gray Iron: S-N Curves for Unalloyed vs. Alloyed......Page 263
10.4 Gray Iron: Effect of Environment......Page 264
10.5 Class 30 Gray Iron: Modified Goodman Diagram......Page 265
10.6 Class 30 Gray Iron: Fatigue Crack Growth Rates......Page 266
10.7 Gray Irons: Torsional Fatigue for Various Tensile Strength Values......Page 267
10.8 Gray Irons: Torsional Fatigue Data for Five Different Compositions......Page 268
10.9 Gray Irons: Thermal Fatigue - Effect of Aluminum Additions......Page 269
10.10 Gray Irons: Thermal Fatigue - Effect of Chromium and Molybdenum Additions......Page 270
10.11 Gray Irons: Thermal Fatigue - Room Temperature and 540 °C (1000 °F)......Page 271
10.12 Gray Irons: Thermal Fatigue Properties - Comparisons with Ductile Cast Iron and Carbon Steel......Page 272
10.13 Cast Irons: Thermal Fatigue Properties for Six Grades......Page 273
10.14 Ductile Iron: Effect of Microstructure on Endurance Ratio-Tensile Strength Relationship......Page 274
10.15 Ductile Iron: Effect of Microstructure on Endurance Ratio-Tensile Strength Relationship......Page 275
10.16 Ductile Iron: S-N Curves for Ferritic and Pearlitic Grades, Using V-Notched Specimens......Page 276
10.17 Ductile Iron: S-N Curves for Ferritic and Pearlitic Grades, Using Unnotched Specimens......Page 277
10.18 Ductile Iron: Fatigue Diagrams for Bending Stresses and Tension-Compression Stresses......Page 278
10.19 Ductile Iron: Effect of Surface Conditions - As-Cast vs. Polished Surface......Page 279
10.20 Ductile Iron: Fatigue Limit in Rotary Bending as Related to Hardness......Page 280
10.21 Ductile Iron: Effect of Rolling on Fatigue Characteristics......Page 281
10.22 Ductile Iron: Effect of-Notches on a 65,800-psi-Tensile-Strength Grade......Page 282
10.23 Ductile Iron: Fatigue Crack Growth Rate Compared with That of Steel......Page 283
10.24 Malleable Iron: S-N Curve Comparisons of Four Grades......Page 284
10.25 Pearlitic Malleable Iron: Effect of Surface Conditions on S-N Curves......Page 285
10.26 Pearlitic Malleable Iron: Effect of Nitriding......Page 286
10.27 Ferritic Malleable Iron: Effect of Notch Radius and Depth......Page 287
Blank Page......Page 42