دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ویرایش: نویسندگان: Claude Leroy سری: ناشر: World Scientific Publishing Company سال نشر: 2010 تعداد صفحات: 950 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 131 مگابایت
کلمات کلیدی مربوط به کتاب ذرات هسته ای ، ذرات و فیزیک فضایی ، ردیاب ها و کاربردهای فیزیک پزشکی: مجموعه مقالات یازدهمین کنفرانس (ذرات هسته ای ، ذرات ، فضا ... ردیاب ها و کاربردهای فیزیک پزشکی): فیزیک، کارگاه، فیزیک تجربی و روش های تحقیق فیزیکی
در صورت تبدیل فایل کتاب Astroparticle, Particle and Space Physics, Detectors and Medical Physics Applications: Proceedings of the 11th Conference ( Astroparticle, Particle, Space ... Detectors and Medical Physics Applications ) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ذرات هسته ای ، ذرات و فیزیک فضایی ، ردیاب ها و کاربردهای فیزیک پزشکی: مجموعه مقالات یازدهمین کنفرانس (ذرات هسته ای ، ذرات ، فضا ... ردیاب ها و کاربردهای فیزیک پزشکی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Organizing committee......Page 6
Preface......Page 8
CONTENTS......Page 12
Advanced Detectors and Particle Identification......Page 28
1. Introduction......Page 30
3. Experimental setup......Page 31
4. Data analysis and PDE calculation......Page 32
References......Page 34
Employing carbon nano-tubes in new nano-structured radiation detectors A. Ambrosio, M. Ambrosio, C. Aramo, V. Carillo, F. Guarino, P. Maddalena, V. Grossi, M. Passacantando, S. Santucci and A. Valentini......Page 35
1. Introduction......Page 36
2. Photoresponsivity of MWCNT......Page 37
References......Page 40
1. Introduction......Page 42
2. The RICH detector design......Page 43
3. The RICH prototype: test beam results......Page 44
3.1. The RICH-100 prototype......Page 45
3.2. The RICH-400 prototype......Page 46
References......Page 48
1. Introduction......Page 49
2. The status of the art of the Cherenkov imaging counters......Page 50
4. New opportunities for the time-of-flight technique......Page 53
5. Perspective in single photon detection......Page 54
References......Page 56
1. Introduction......Page 59
1.1. The X-ray -imaging system......Page 60
2. Example of application of micro-radiography......Page 61
Acknowledgments......Page 62
References......Page 63
1. Introduction......Page 64
2. Simulation of Energy Response Spectra......Page 65
4. Material Reconstruction......Page 66
5. Phase contrast imaging......Page 68
References......Page 70
1. Particle ID in LHCb......Page 71
3. The Flat-Panel......Page 72
3.2. The Test Setup and the Measurement of Cross-Talk......Page 73
References......Page 75
1. Introduction......Page 76
2. Design requirement of the Timing Counter......Page 77
4. Performances of the Timing Counter......Page 78
References......Page 80
1. Large volume TPCs - the ALICE TPC as an example......Page 81
2. Particle identification with TPCs......Page 82
3. Results from the calibration of the ALICE TPC with cosmic rays and krypton......Page 84
References......Page 85
1. Introduction......Page 86
2.1. Physical principles......Page 87
2.2. Single edge XPCI......Page 88
2.3. Single Grating XPCI......Page 89
References......Page 90
1. Introduction......Page 91
2. Measurement Set-Up......Page 92
3. Measurement results and fit procedure......Page 93
References......Page 96
1. Introduction......Page 97
2. n- discrimination......Page 98
3. Results and discussions......Page 99
References......Page 101
1. Introduction......Page 102
2. Measurements and results......Page 103
References......Page 106
1. Introduction......Page 107
2.1. Data from VPT in the CMS endcaps......Page 108
2.2. Extended tests on an individual VPT......Page 109
3. Conclusions and Future Work......Page 110
References......Page 111
1. Introduction......Page 112
3. Data, Analysis and Results......Page 113
References......Page 116
1. Introduction......Page 117
2. The detector......Page 118
3. Preliminary results......Page 120
4. Conclusion and outlook......Page 121
References......Page 122
1. Introduction......Page 123
2. Device description......Page 124
3. Experimental Results......Page 125
References......Page 127
1.1. Radiation tolerant sensors/or the luminosity upgrade o/the LHC......Page 128
1.2. R&D on radiation tolerant tracking detector sensors......Page 129
2. Characterization of silicon materials using pad detectors......Page 130
3. Radiation induced microscopic defects......Page 132
4.1. Results on p-type mini strip sensors......Page 133
4.2. Results on thin mini strip sensors......Page 134
4.3. Performance of MCZ sensors in mixed irradiation experiments......Page 135
6. Conclusion......Page 136
References......Page 137
1. Introduction......Page 138
2. Experimental setup......Page 139
3. Measurements and Results......Page 140
References......Page 142
1. Introduction......Page 143
2. Timing calibration......Page 145
4. Physics performance at LHC startup......Page 146
References......Page 147
1. Introduction......Page 148
2.1. Continuous detector blocks......Page 149
2.2. A human brain PET scanner based on continuous detector blocks......Page 150
2.3. Laboratory PET demonstrator......Page 151
3. Results......Page 152
4. Conclusions......Page 153
References......Page 154
1. Introduction......Page 155
1.2. Infrastructure......Page 156
1.4. Performance......Page 157
2. Calibration with First pp Collision Data......Page 158
References......Page 159
1. Introduction......Page 160
2. Experimental......Page 162
3. Results and discussion......Page 163
4. Conclusions......Page 164
References......Page 165
1.1. The PIN diode......Page 167
2. Experimental......Page 168
3. Results......Page 169
References......Page 171
2. Low temperature experimental set-up......Page 172
3. Experimental set-up for measurements above 7 K.......Page 173
4. Discussion......Page 174
References......Page 176
1. Introduction......Page 177
2. The ALICE-HMPID detector......Page 178
3. Identification at higher moment a and ALICE-PID upgrade......Page 179
References......Page 181
1. Introduction to the ATLAS-MPX network......Page 182
1.1. Device calibration......Page 183
1.3. A TLAS-MPX data visualization interface......Page 184
2. Estimation of the Single Event Effect......Page 185
3. Detection of the background cosmic muons......Page 186
References......Page 188
Astroparticle and Underground Experiments......Page 190
1. Introduction......Page 192
2.1. The Detector......Page 193
2.3. Expected Performance......Page 194
3.1. The Micromegas......Page 195
References......Page 196
1. Introduction......Page 197
2. The DAMA/LIBRA results......Page 199
References......Page 205
2. Atmospheric neutrinos......Page 207
3. Atmospheric muon charge ratio......Page 209
4. OPERA-LVD coincidences......Page 210
References......Page 211
1. Introduction......Page 212
2. Antihydrogen beam production and g measurement......Page 213
References......Page 216
1. Neutrino-Astronomy......Page 217
Cherenkov Detectors......Page 218
4. The KM3NeT Consortium......Page 220
References......Page 221
1. Introduction......Page 222
2.1. Internal clock system......Page 223
3.1. Absolute orientation......Page 224
4. Conclusions......Page 225
References......Page 226
1. Introduction.......Page 227
2. 3 He System Upgrades.......Page 229
3. Detector upgrades.......Page 230
References......Page 231
1. Introduction......Page 232
2. Experimental set-up......Page 233
3. Monte Carlo simulation......Page 234
4. Estimates of global detection efficiencies......Page 235
References......Page 236
1. Introduction......Page 237
2. Stochastic 2D Monte Carlo......Page 238
3.1. Main parameters of the model......Page 240
3.3. Dynamic parameters......Page 241
4.1. Proton Fluxes......Page 242
4.2. AMS-02 Predictions......Page 243
References......Page 245
1. Introduction......Page 247
3. Start-up Issues......Page 248
4. CNGS Performance......Page 250
References......Page 251
1. Introduction......Page 253
2.1. LOPES......Page 254
2.3. LOFAR......Page 255
2.5. Calibration......Page 256
3. Radio Signal and Shower Parameters......Page 257
4. Polarization and Asymmetries......Page 258
References......Page 261
1. Introduction......Page 263
2. HSRL Prototype Design......Page 264
3.1. Fringe Pattern Fit Formalism......Page 265
3.2. Determination of Aerosol to Molecular Backscattered Ratio......Page 266
4. Laser Stability Study......Page 267
References......Page 268
1 Introduction......Page 269
2 PICASSO Detectors......Page 270
3 Event Discrimination and Analysis......Page 271
References......Page 274
1. Introduction......Page 275
2.2. Fabrication process......Page 276
3. Measurements and Results......Page 277
References......Page 279
1. Introduction......Page 280
2.1. CCD Sensors Used......Page 281
2.2. Best Focusing Curve......Page 282
3.1. The new Configuration of the Emulator......Page 283
3.2. The Obtained Molecular Spectra......Page 284
References......Page 285
1. Introduction......Page 286
2.1. The CNGS beam......Page 287
2.3. The off-line emulsions scanning......Page 288
2.4. The event validation chain......Page 289
2.6. The OPERA electronic detectors......Page 290
3.1. Electronic detectors analysis......Page 291
3.2. Vertex location......Page 292
3.3. Emulsions data analysis......Page 293
4. Conclusions......Page 294
References......Page 295
1. Introduction......Page 296
2. Wiring layout......Page 297
3. Power budget......Page 298
References......Page 300
1. The CNGS Neutrino Beam......Page 301
3. Nuclear Emulsion Films and the OPERA Brick......Page 302
4. Opera Event Analysis......Page 303
References......Page 305
1. Results from Cosmic Rays and -ray Observatories......Page 306
3. AMS-02 compared with EGRET and Fermi......Page 309
4. Pulsars......Page 310
References......Page 312
1. The detector......Page 313
1.1. Strategy......Page 314
1.2. Fluid Operations......Page 315
1.3. Purity......Page 316
2. Data......Page 317
References......Page 319
1. Introduction......Page 320
2. FPGA implementation of the algorithm......Page 321
3. L2 trigger board......Page 323
References......Page 324
1. Introduction......Page 325
1.1. Double Beta Decay......Page 326
2.1. The experimental sensitivity......Page 327
3. Cuoricino......Page 329
3.1. Cuoricino results......Page 330
4. CUORE and CUORE_0......Page 331
5. The other players of the game......Page 332
6. Conclusions......Page 333
References......Page 334
1. Introduction......Page 335
2. The method of neutrino burst detection......Page 336
References......Page 339
1. Introduction......Page 340
2.1. Pixel response function......Page 342
3. PSF parametrisation......Page 343
3.1. Direct fit to obtained profiles......Page 344
References......Page 345
1. Introduction......Page 346
2. Signal generation......Page 347
3.3. Lake Baikal......Page 348
4. Background and medium properties......Page 349
5. Direction and source reconstruction......Page 350
7. Summary......Page 354
References......Page 355
Recent results from the ANTARES experiment M. Vecchi......Page 356
References......Page 360
Calorimetry......Page 362
1. Introduction......Page 364
1.1. The Experimental Setup......Page 365
2. The Geant4 Simulation......Page 366
3. Results......Page 367
Bibliography......Page 368
2. Electromagnetic performance......Page 369
3. Intercalibration with E/p......Page 371
4. Bremsstrahlung recovery......Page 372
References......Page 373
1.1. Motivation......Page 374
2.1. Structure......Page 375
2.3.1. LED and alpha sources......Page 376
2.4. Performances of calorimeter......Page 377
References......Page 378
1. The ATLAS Liquid Argon Calorimeter......Page 379
3. Response Uniformity from Cosmic Rays as Minimum Ionizing Particles......Page 380
4. Precision Pulse Shape Studies......Page 381
5. \"Jets\" and Electrons in Cosmic Ray Events......Page 382
References......Page 383
1. Introduction......Page 384
Acknowledgements......Page 387
References......Page 388
1. Introduction......Page 389
2. Performance of HCAL with Cosmic \'s.......Page 390
4. Electronic Noise......Page 392
References......Page 393
1. The CALICE Detectors......Page 394
2. Track segments in hadronic showers......Page 395
3. In-situ calibration strategy and requirements for an ILC calorimeter......Page 396
4. Test of calibration strategy on real data......Page 397
References......Page 398
1. Introduction......Page 399
2. CCALT: a Crystal Calorimeter with Time......Page 400
3. Test results with electron beams.......Page 401
References......Page 403
1. physics at KLOE......Page 404
2. Technology: crystals, photosensors, fee electronics......Page 406
3. Detector simulation, test beam data and plans......Page 407
References......Page 408
1. Introduction......Page 409
3.1. Linearity and resolution using energy weighting.......Page 410
3.3. Transversal shower profiles of hadrons......Page 411
References......Page 413
1. Introduction......Page 414
3. Testbeam Setup and Data......Page 415
4. Comparison of cluster moments in Data and MC......Page 416
5. Linearity and energy resolution for pions......Page 417
References......Page 418
ATLAS liquid argon endcap calorimeter R&D for sLHC P. Schacht......Page 419
1. ATLAS Liquid Argon Calorimeter......Page 420
2.2. Beam, Set-up and Calorimeter Modules......Page 421
2.4. Results......Page 423
3.1. Present HEC Gold electronics......Page 424
3.2. Requirements of the HEC cold electronics for the sLHC upgrade......Page 427
3.3. Technologies studied......Page 428
References......Page 430
1. The KLOE-2 proposal......Page 431
2. The quadrupole tile calorimeter, QCALT......Page 432
2.1. Tests performed on single components......Page 433
2.2. Next plans......Page 434
References......Page 435
High Energy Physics Experiments......Page 436
2. Online Data Quality Monitoring......Page 438
2.2. Quasi-online Monitoring......Page 439
4. Trigger monitoring operation......Page 440
References......Page 441
1. Introduction......Page 442
2. Tracking and Calorimetry......Page 443
3. Electron and photon reconstruction......Page 444
4. Electron and photon identification......Page 445
References......Page 447
1. Introduction......Page 448
2. Low energy tests of the Standard Model......Page 449
3. Analytical study, experimental set up, numerical analysis and main results......Page 450
References......Page 452
1. Introduction......Page 453
2. LVLl trigger and timing performance......Page 454
3. RPC cosmic data analysis and results......Page 455
4. Monitoring and Data Quality status......Page 456
References......Page 457
1. Introduction......Page 458
3. Crystal Properties......Page 459
6. Energy and Time Reconstruction of Electrons and Photons......Page 460
7.1. Validation of Intercalibration Constants......Page 461
7.2. Crystal Transparency Monitoring......Page 462
9. Cosmic Run at Four Tesla (CRAFT)......Page 463
References......Page 464
1. Introduction......Page 465
2. The ATLAS muon trigger......Page 466
3. The Muon Event Filter Implementation......Page 467
4. Muon Event Filter performance and results on 2008 cosmics data......Page 468
References......Page 469
1. Introduction......Page 470
2.1. Detector modules and read-out chain......Page 471
2.2. Commissioning with cosmic rays......Page 473
3. ATLAS BLM......Page 474
References......Page 475
1. physics at KLOE2......Page 476
2. Monte Carlo event generators......Page 477
3. Tracking of leptons......Page 478
4. The High Energy Tagger detector......Page 479
References......Page 480
1. Introduction......Page 481
2. The Trigger /DAQ System......Page 482
3. Single-beam Experience......Page 483
5. Performance Tests of the DAQ/HLT System......Page 484
References......Page 485
Performance of the readout electronics chain of the MICE electron muon ranger D. Lietti, A. Berra, D. Bolognini, S. Hasan, A. Mattera, M. Prest, A. Blondel, F. Cadoux, J.S. Graulich, F. Masciocchi, H. Wisting, G. Giannini, D. Iugovaz S. Reia, V. Mascagna and E. Vallazza......Page 486
2. The Electron Muon Ranger......Page 487
3. Results at CERN PS beam line......Page 489
References......Page 491
1. ATLAS Muon Spectrometer......Page 492
2. Muon Track Reconstruction......Page 493
2.3. Segment tagging......Page 494
3. Performance......Page 495
References......Page 496
1. The CMS Computing Model......Page 497
3. The physics analysis at the Tier-2 sites......Page 499
References......Page 500
1. Motivations......Page 501
3. The MEG experimental set-up......Page 502
4. The detector performances and first results......Page 503
4.3. Likelihood analysis......Page 504
4.4. PDFs construction......Page 506
4.5. Results......Page 508
References......Page 510
1. Introduction......Page 511
3. The QUARTIC ToF Detector......Page 513
3.1. QUARTIC Frontend Electronics......Page 514
4. Test Performance......Page 515
5. Design Challenges......Page 516
References......Page 517
1. The LHCb experiment at LHC......Page 518
2. The LHCb Muon System......Page 519
3. The LHCb trigger and data acquisition system and the TELL1 board......Page 520
4. Readout of the LHCb Muon System with the TELL1 board......Page 521
References......Page 522
1. Introduction......Page 523
2. The R&D Associative Memory project......Page 524
3. Future Possible Applications......Page 525
References......Page 527
1. The ATLAS detector......Page 528
2. Cosmic muon runs......Page 529
3. Subdetector commissioning studies......Page 530
4. Combined performance studies......Page 531
5. Summary & Conclusions......Page 536
References......Page 537
1. ATLAS Detector......Page 538
3. ATLAS Tau Trigger......Page 539
5. Measurement of Tau Trigger Efficiency......Page 540
6. Tau Trigger and Cosmics Data in ATLAS......Page 541
References......Page 542
1. Introduction......Page 543
3. The TDAQ Online Monitoring Framework......Page 544
3.2. Monitoring Applications......Page 545
References......Page 547
2. Alignment strategy......Page 548
4.1. Detector behavior under magnetic field......Page 549
5. Reconstruction performance......Page 550
References......Page 552
1. Introduction......Page 553
2.1. Trigger Selectivity......Page 554
2.2. Momentum Resolution......Page 556
References......Page 557
1. The Resistive Plate Chambers in the CMS experiment......Page 558
2. The RPC in CMS Cosmic Runs......Page 559
3. Chambers Performance Analysis and RPCs trigger......Page 560
4. The RPC Trigger......Page 561
References......Page 562
1.1. The ATLAS Muon Spectrometer......Page 563
2. The ATLAS Conditions Data Base Architecture......Page 565
2.1. The ATLAS Conditions Data Base Software Access......Page 566
References......Page 567
Radiation Damage......Page 568
Effect of gamma irradiation on ALKALI BORATE glasses by EPR spectroscopy N. Catallo, S. Baccaro, S. Colacicchi, G. Gualtieri, G. Ferrara and G. Sharma......Page 570
2. Materials and methods......Page 571
3. Results and discussion......Page 573
References......Page 574
1. Introduction......Page 575
2. Case study: the ATLAS Electromagnetic Calorimeters\' Power System......Page 576
3. Experiment description......Page 577
4. Results......Page 578
References......Page 581
1. Introduction......Page 582
4. Online Measurements......Page 583
5. Off-line Measurements......Page 585
References......Page 586
1. Introduction......Page 587
2. Single Event Burnout......Page 588
3. Single Event Gate Rupture......Page 589
4. Latent Damages......Page 590
References......Page 591
Irradiation resistance of novel scintillating glass with SN02 as emission center C. Shen, S. Baccaro, Y. Ou, S. Wang and G. Chen......Page 592
2. Experimental Methods......Page 593
3. Results and discussion......Page 594
Acknowledgments......Page 597
References......Page 598
1. Introduction......Page 599
2. Test Stand for CCD Operation......Page 600
4. CTI Results Pre-Irradiation......Page 601
5. Conclusions and Outlook......Page 602
References......Page 603
1. Introduction......Page 604
2. Samples Characteristics and Experimental Procedure......Page 605
3. Displacement Dose......Page 608
4.1. Temperature Scan of non-Irradiated Samples......Page 609
5. Conclusions......Page 610
References......Page 611
1. Introduction......Page 612
2. Irradiated detector performance......Page 613
References......Page 616
Radiotherapy and Medical Instrumentations......Page 618
1. Introduction......Page 620
2. Methodology......Page 621
3. Results......Page 622
References......Page 624
1. Introduction......Page 625
2. Present status of proton and carbon ion therapy......Page 627
3.1. Dose delivery systems......Page 630
3.2. Imaging and quality assurance......Page 632
3.3. Particle accelerators......Page 633
Acknowledgements......Page 635
References......Page 636
1. Introduction......Page 637
2. Materials and Methods......Page 638
3. Results......Page 639
4. Conclusions......Page 640
References......Page 641
1. Introduction - Facts & Figures - dimensions of the problem......Page 642
3. Limits of current PET overcome by the 3D-CBS invention......Page 643
3.2. Additional inventions related to early cancer detection......Page 644
References......Page 647
A new method to measure 10B update in lung adenocarcinoma in hospital BNCT E.M. Donegani, F. Basilica, D. Bolognini, P. Borasio, E. Capelli, P. Cappelletti, P. Chiari, M. Frigerio, S. Gelosa, G. Giannini, S. Hasan, A. Mattera, P. Mauri, A. F. Monti, A. Ostinelli, M. Prest, E. Vallazza and A. Zanini......Page 648
2. The INFN PhoNeS project: a new hospital-based neutron source......Page 649
3. Experimental setup: detector characterization and sample preparation......Page 650
4. A step forward: BNCT and the lung......Page 651
References......Page 652
Nuclear emulsion film detectors for proton radiography: Design and test of the first protpotype S. Braccini, A. Ereditato, I. Kreslo, U. Moser, C. Pistillo, S. Studer and P. Scampoli......Page 653
2. Proton radiography with nuclear emulsions......Page 654
3. Construction and test of the first prototype......Page 655
References......Page 657
2. INAA......Page 658
3.2. Electron imaging unit......Page 659
4. System calibration and results......Page 660
References......Page 662
AX-PET, a demonstrator for PET imaging using long axially oriented scintillating crystals P. Beltrame, A. Braem, V. Fanti, C. Joram, T. Schneider, J. Seguinot, C. Casella, G. Dissertori, L. Djambazov, W. Lustermann, F. Nessi-Tedaldi, F. Pauss, D. Schinzel, P. Solevi, J. F. Oliver, M. Rafecas, R. de Leo, E. Nappi, E. Chesi, E. Cochran, K. Honscheid, H. Kagan, A. Rudge, S. Smith, P. Weilhammer, I. Johnson, D. Renker, N. Clinithorne, S. Huh, E. Bolle, S. Stapnes and F. Meddi......Page 663
2. Demonstrator module construction......Page 664
4. Energy calibration......Page 665
5. Position resolution......Page 666
References......Page 667
1. The Medipix detector family......Page 668
2.1. Reconstruction of X-ray spectra......Page 669
2.2. Dosimetry......Page 670
3. Material resolved X-ray imaging......Page 672
4. X-ray polarimetry......Page 673
5. Hybrid Photon Detector......Page 675
6. Summary......Page 676
References......Page 677
Software Applications......Page 678
The evolution of FTK, a real-time tracker for the hadron collider experiments A. Annovi, M. Beretta, P. Laurelli, E. Bossini, V. Cavasinni, F. Crescioli, M. Dell\'Orso, P. Giannetti, M. Piendibene, G. Punzi, F. Sarri, I. Vivarelli, G. Volpi, L. Sartori, A. Boveia, E. Brubaker, F. Canelli, M. Dunford, A. Kapliy, YK. Kim, C. Melachrinos, M. Shochet, J. Tuggle, H. DeBerg, A. McCarn, M. Neubauer, M. Franklin, C. Mills, N. Kimura, K. Yorita, J. Proudfoot, J. Zhang and R. Tripiccione......Page 680
2. FTK architecture overview......Page 681
3. An additional pattern matching step......Page 682
4. Results of the simulation to check the new FTK......Page 683
References......Page 684
1. Introduction......Page 685
2.2. Simulation......Page 686
2.4. Reconstruction......Page 687
2.5. Forward Proton Parametrisation......Page 688
2.6. Roman Pot Alignment......Page 690
3. Data Management......Page 691
References......Page 692
1. Introduction......Page 693
2. Data Taxonomy in the 6-Level Fiber Bundle Data Model......Page 694
2.1. Point Sets......Page 695
2.2.1. Line Sets......Page 696
2.3. Surfaces......Page 697
2.4.1. Uniform, Rectilinear and Curvilinear Grids......Page 698
2.4.3. Multispectral Grids......Page 699
2.5. Volumetric Meshes......Page 700
2.7. Color Spaces......Page 701
References......Page 702
1. Introduction......Page 703
2. The DQM system in CMS......Page 704
4. Data Certification......Page 705
References......Page 707
MARS - CheObs ed. – a flexible software framework for future Cherenkov telescopes T. Bretz and D. Dorner......Page 708
2. The DWARF telescope......Page 709
3.1. Structure......Page 710
3.2. The simulation......Page 711
3.3. Considerations and results......Page 712
3.4. Automation......Page 713
References......Page 714
Components-based software in the HARP PS214 experiment at CERN M. G. Catanesi, E. Radicioni, S. Giani, I. Papadopoulos, J. Panman, P. Arce, M. Ellis and J.J. Gomez-Cadenas......Page 715
2. The HARP Experiment......Page 716
3.2. Neutrino Factory......Page 718
3.3. Software framework......Page 720
3.4. Software Components......Page 721
3.5. Persistency......Page 722
3.7. Performances......Page 723
References......Page 724
1. Introduction......Page 725
2. Improved Geant4 Scattering-Model......Page 727
3. Geant4 NIEL Results after Modification......Page 730
4. The ISO 15390 Model for GCRs in Geant4......Page 732
References......Page 734
1. Introduction......Page 736
2. The Planck mission......Page 737
3. The LFI DPC data processing levels......Page 738
4. The Planck/LFI telemetry handling......Page 739
4.2. The Telemetry Handling......Page 740
5. The Data Management Component......Page 742
6. Scientific workflows......Page 743
6.1. The Federation Layer......Page 744
References......Page 745
1. Introduction......Page 746
2.3. Galactic cosmic ray spectra......Page 747
2.4. Nuclear interaction models......Page 748
References......Page 750
1. Introduction......Page 751
2.2. Offline Dropbox - motivation......Page 752
2.3. Offline Dropbox - implementation......Page 753
References......Page 755
1.1. Goals......Page 756
2. DAQ and Trigger requirements......Page 757
5.1. The VFAT Control Path......Page 758
5.2. The VFAT Readout Path......Page 759
5.3. Trigger......Page 761
5.4. Data Flow......Page 762
6.1. Readout Link Options......Page 763
6.2. PC Cluster and Local Data Storage......Page 764
References......Page 765
Space Experiments and Heliosphere......Page 766
1. Introduction......Page 768
2. The Cryomagnet......Page 771
Acknowledgments......Page 776
References......Page 777
1. Introduction......Page 778
2. Diffusion in heliosphere and in the interstellar space......Page 779
3. Diffusion in heliosphere and in the interstellar space......Page 780
References......Page 781
1. Introduction......Page 782
2. Simulation of hadronic and electromagnetic showers......Page 783
4. Beam test......Page 784
5. Conclusions......Page 785
References......Page 786
2. Model Description......Page 787
3.1. Potgieter and Moraal - PM model (1985)......Page 788
4. Results......Page 789
References......Page 791
1. Introduction......Page 792
2. -ray observations......Page 793
4. Spectrum......Page 794
5. Conclusion......Page 795
References......Page 796
1. Introduction......Page 797
2. Space weather: societal, economic impacts and forecast......Page 799
3. Physics behind SSA......Page 802
4. Medipix applications for space weather forecast......Page 804
References......Page 805
1. Introduction.......Page 807
2. High time resolution CR data from the ground measurements.......Page 808
3. Cosmic ray anisotropy and geoeffective events.......Page 809
References......Page 810
Overview of the nuclear compton telescope (NCT) Z.-K. Liu, Y.-H. Chang, W.-C. Hung, S.E. Boggs, M.S. Bandstra, E.E. Bellm, D. Perez-Becker, C.B. Wunderer, A. Zoglauer, M. Amman, P.N. Luke, H.-K. Chang, J.-L. Chiu, J.-S. Liang, C.-H. Lin, M.A. Huang, R.-S. Run, S.-J. Chiang and P. Jean......Page 812
2. Major scientific goals......Page 813
3. Instrument......Page 814
4. Analysis tool......Page 815
References......Page 816
2. The Gamma-ray Burst Monitor......Page 817
3. The Large Area Telescope......Page 819
3.1. LAT data taking and analysis overview......Page 820
3.2. LAT on-orbit response......Page 821
4.2. Galactic sources......Page 822
4.3. Extragalactic sources......Page 823
4.5. Electron spectrum......Page 824
6. Acknowledgments......Page 825
References......Page 826
1. Introduction......Page 827
2. ALTA/CZELTA......Page 828
3. Design of the Project......Page 829
4. Very large area coincidencies......Page 831
References......Page 833
Tracking Devices......Page 834
1. Introduction......Page 836
2. Performance of Muon Detectors......Page 837
3. Muon Reconstruction......Page 839
References......Page 840
1. Introduction......Page 841
2. Test results of 80 mm test chamber......Page 842
5. First tests......Page 843
6. GEM-TPC Prototype......Page 844
References......Page 845
2. Design......Page 846
3. Radiation Tests......Page 847
4. Calibration of the Outer Tracker......Page 848
References......Page 850
1. Introduction......Page 851
2. Track-Based Alignment......Page 852
3. Alignment using 2008 Cosmic Ray Data......Page 853
References......Page 855
1. Introduction......Page 856
2. Recent developments and applications......Page 857
3.1. Large Area GEMs......Page 858
3.2. Large Area Micromegas......Page 859
References......Page 860
1. The Gigatracker system......Page 861
2. Readout architectures......Page 862
2.1. On-pixel TDC option......Page 863
2.2. End-of-Column TDC option......Page 864
References......Page 865
1. Introduction......Page 866
2. The Inner Tracker......Page 867
2.1. The C-GEM prototype......Page 868
2.2. Planar GEM for readout studies......Page 869
3. Conclusions......Page 870
References......Page 871
1. Introduction......Page 872
1.2. Motivation for the Tracker Upgrade......Page 873
2. Phase I Upgrade - Pixel Only......Page 874
3. Phase II Upgrade - Full Tracker Upgrade......Page 875
4.2. CO2 Cooling......Page 877
4.4. PT Trigger Modules......Page 878
References......Page 879
1. Introduction......Page 880
2. The silicon tracking system......Page 881
3. The Prototype......Page 882
References......Page 884
1. Introduction......Page 885
3.1. Preprocessing of the data......Page 886
3.2. Resolution......Page 887
3.3. Trigger Application......Page 888
References......Page 890
1. Introduction......Page 891
3. Device Under Test......Page 892
4.1. Signal Measurements......Page 893
4.2. Efficiency......Page 894
References......Page 895
1. Introduction......Page 896
3. Full Tracker Alignment......Page 897
4. Track splitting method......Page 899
References......Page 900
1.1. The Detector......Page 901
1.3. Alignment strategy and procedures......Page 902
2.1. The Alignment of Silicon Pixel Detector using Millepede......Page 903
2.2. The Alignment of the Silicon Strip Detector using Survey Measurements and Millepede......Page 904
References......Page 905
1.1. Introduction......Page 906
1.3. Commissioning and Calibration......Page 907
2. Experience with cosmics and first beams......Page 908
References......Page 910
1. Introduction......Page 911
3. Performance Studies......Page 912
References......Page 915
1. Introduction......Page 916
3.1. Tuning of Optical Connections......Page 917
3.3. Time-Over-Threshold Tuning......Page 918
3.4. Cosmic Muon Ray Data Taking......Page 919
References......Page 920
1. Introduction......Page 921
2. Sensor design......Page 922
3. Front-end electronics......Page 924
References......Page 925
1. Introduction......Page 926
3. Beam Synchronization Tests......Page 927
3.1. Tests in 2008......Page 928
3.2. Test in June 2009......Page 929
References......Page 930
2.1. Threshold and Noise calibration......Page 931
2.2. Gain and Pedestal calibration......Page 932
3.3. Lorentz Angle Calculation......Page 933
3.4. Hit Efficiency......Page 934
4. Conclusion......Page 935
References......Page 936
1. Introduction......Page 937
3.1. Charge Collection Efficiency (CCE) Measurements......Page 938
4. Alternative module integration concepts......Page 941
4.2. Thermal management......Page 942
References......Page 943
List of participants......Page 944