دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ویرایش: نویسندگان: Michele Barone, Andrea Gaddi, Claude Leroy, Larry Price, Pier-Giorgio Rancoita سری: ISBN (شابک) : 9789812819086, 9812819088 ناشر: World Scientific Publishing Company سال نشر: 2008 تعداد صفحات: 1063 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 88 مگابایت
کلمات کلیدی مربوط به کتاب Astroparticle، ذرات و فیزیک فضا، آشکارسازها و کاربردهای فیزیک پزشکی (2006)(en)(114: فیزیک، کارگاه های آموزشی، فیزیک تجربی و روش های تحقیق فیزیکی
در صورت تبدیل فایل کتاب Astroparticle, Particle and Space Physics, Detectors and Medical Physics Applications (2006)(en)(114 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Astroparticle، ذرات و فیزیک فضا، آشکارسازها و کاربردهای فیزیک پزشکی (2006)(en)(114 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کاوش در دنیای زیرهسته ای از طریق آزمایش های پیچیده فزاینده ای انجام می شود که طیف وسیعی از انرژی ها و در محیط های مختلف را پوشش می دهد - از شتاب دهنده های ذرات، آشکارسازهای زیرزمینی گرفته تا ماهواره ها و آزمایشگاه های فضایی. برای موفقیت این برنامههای تحقیقاتی، باید از تکنیکهای جدید، مواد جدید و ابزار دقیق در آشکارسازها، اغلب در مقیاس بزرگ، استفاده شود. از این رو، فیزیک ذرات در خط مقدم پیشرفت تکنولوژی قرار دارد و منجر به کاربردهای متعددی می شود. در این میان کاربردهای پزشکی به دلیل مزایای بهداشتی و اجتماعی که به همراه دارد از اهمیت خاصی برخوردار است. این جلد به بررسی پیشرفت های انجام شده در تمام جنبه های تکنولوژیکی آزمایش های فعلی در این زمینه می پردازد.
The exploration of the subnuclear world is done through increasingly complex experiments covering a wide range of energies and in a large variety of environments - from particle accelerators, underground detectors to satellites and space laboratories. For these research programs to succeed, novel techniques, new materials and new instrumentation need to be used in detectors, often on a large scale. Hence, particle physics is at the forefront of technological advancement and leads to numerous applications. Among these, medical applications have a particular importance due to the health and social benefits they bring. This volume reviews the advances made in all technological aspects of current experiments in the field.
CONTENTS......Page 10
Preface......Page 8
Advanced Detectors and Particle Identification......Page 18
1. Overview of the main activities......Page 20
2. LHCb GEM detectors......Page 21
3. Cylindrical GEM detectors for KLOE upgrade......Page 22
References......Page 24
Current Results on the Development of a Carbon Nanotube Radiation detector......Page 25
1. Introduction......Page 26
1.1. Characteristics of CNT device used......Page 27
1.2. The field emission investigation......Page 28
1.3. Photoconductivity......Page 29
1.4. Response to pulsed light......Page 31
1.5. Theorethical aspects......Page 33
References......Page 34
1. Introduction......Page 35
2. Deep n-well MAPS concept......Page 36
3. Apsel2M and Apsel2T chips characterization......Page 37
4. Design and operation of the SDRO chip......Page 38
References......Page 39
1. Introduction......Page 40
2.1. Demonstrator description......Page 41
2.3. Dark Current measurement......Page 42
2.5. Photon counting capability......Page 43
References......Page 44
1. Introduction......Page 45
2.1 Introduction......Page 46
2.2 Development at FBK-irst......Page 47
3.1 Introduction......Page 48
3.2 Development at FBK-irst......Page 49
4.2 Development at FBK-irst......Page 53
5.2 Development at FBK-irst......Page 54
Acknowledgements......Page 55
References......Page 56
1. Introduction......Page 57
3. Final Results from Quality Assurance Tests on All HPDs......Page 58
4. Backpulse Measurements......Page 60
References......Page 61
Fast photon-detection for COMPASS RICH-1......Page 62
2. General description of the photon-detection system......Page 63
3. The read-out electronics......Page 64
4. Performances in the real environment......Page 65
References......Page 66
1. Introduction......Page 67
2. Principle of operations......Page 68
3. Test bench results......Page 70
References......Page 71
1.1. The Ring Imaging Cherenkov detector in ALICE......Page 72
2. The online data quality monitoring......Page 73
3. Particle identification......Page 74
References......Page 76
1. Thin Film on ASIC technology for radiation detection......Page 77
2. The aSiHtest detector......Page 78
3. Leakage current mechanisms......Page 79
4. Detection of 10 to 50 keV single electrons......Page 80
References......Page 81
2. Calculations and results......Page 82
References......Page 86
1. Introduction......Page 87
3. Results and Discussion......Page 88
References......Page 91
1.1. CMC and fibre pull-out phenomena......Page 92
2. CERAMIC MATRICES AND RELATED MANUFACTURING TECHNIQUES......Page 93
2.3 Silicon Infitration......Page 94
2.5 Main characteristics of CMCs......Page 95
4. REFERENCES......Page 96
1. The CMS Muon System in the CMS Cosmic Challenge......Page 97
2. Muon Detector Performance in the MTCC......Page 99
3. Comparison between Data and Monte Carlo Simulation......Page 100
References......Page 101
1. Introduction......Page 102
3. LHCb measurements......Page 103
References......Page 106
1. Introduction......Page 107
2. Initial Computer Simulation: SIMION 3 0......Page 108
3. Experimental Data......Page 109
4. Further Simulation: SPICE......Page 110
References......Page 111
1. Introduction......Page 112
2. Beam test setup......Page 113
3. Data analysis......Page 114
References......Page 116
1. Introduction......Page 117
2. The FAST Detector......Page 119
References......Page 121
1. Introduction......Page 122
3. Measurement Results......Page 123
References......Page 126
1. Introduction......Page 127
3. Experiments and Results......Page 128
4. Current Works......Page 129
References......Page 131
1. Introduction......Page 132
2. Experimental......Page 133
References......Page 136
2. Ring Imaging Cherenkov Detectors......Page 137
3. The LHCb RICH System......Page 138
5. RICH2......Page 139
6. Hybrid Photon Detectors......Page 140
References......Page 141
Latest results from a mass-production sample of MRPCs for the ALICE TOF detector......Page 142
2. Experimental results......Page 143
References......Page 146
2. Experiment......Page 147
4. Test of the count rate losses with a source......Page 150
References......Page 152
2. HMPID - Detector Control System......Page 153
3. High Voltage and Low Voltage systems......Page 154
4. Cooling System......Page 155
5. Gas System......Page 156
References......Page 157
Astroparticle and Underground Experiments......Page 158
1. The ECC technique in OPERA......Page 160
2. The European Scanning System......Page 161
3. The Japanese Scanning System......Page 162
4. Data quality and analysis Capabilities......Page 163
References......Page 164
CHERCAM: a Cherenkov imager for the CREAM experiment......Page 165
1. Introduction......Page 166
2. CHERCAM architecture......Page 167
3. Detector validations......Page 168
4. Simulation......Page 169
References......Page 170
1. Introduction......Page 171
3. A longitudinal force......Page 172
4. The interferometer’s response to the longitudinal component......Page 174
References......Page 180
1. Introduction......Page 182
2. Sensitivity and the Background......Page 183
3.1. The Central Region......Page 184
3.3. The Electronics, Trigger and DAQ......Page 185
References......Page 186
1. The MAGIC Telescope......Page 187
2. Technical Solutions......Page 188
2.2. The Reflector and Details on its Construction......Page 189
2.3. Camera and read-out......Page 190
References......Page 191
1. Introduction......Page 192
2. Majorana Neutrinos and Double Beta Decay......Page 193
3. Experimental techniques......Page 194
4. CUORICINO and CUORE......Page 195
References......Page 199
1. Introduction......Page 201
3. Mibeta-2 daq......Page 202
3.1. A focus on the software......Page 204
Reference......Page 205
1. Introduction......Page 206
3. Experimental......Page 207
References......Page 210
1. Introduction......Page 211
2.1. Mounting position of optical filters......Page 212
2.2. Optical filter technology considerations......Page 213
4. Conclusion and Prospects......Page 214
References......Page 215
1. Introduction......Page 216
2. Experimental procedure......Page 217
3. Non reproducible candidates......Page 218
References......Page 220
1. Introduction......Page 221
3. Single Photoelectron Spectrum......Page 222
4. Time Characteristics......Page 223
6. Afterpulsing......Page 224
References......Page 225
1. Introduction......Page 226
2. Calorimetric Rhenium Experiments......Page 228
3. The Experiment MARE......Page 229
References......Page 230
1. Introduction......Page 231
2.2. Inner detector photomultipliers......Page 232
2.2.1. Photomultiplier encapsulation......Page 233
2.4. The outer detector......Page 235
2.5.2. Internal source calibration system......Page 236
2.6. Nylon vessels......Page 237
3. Performances and first results......Page 238
References......Page 239
1. Introduction......Page 241
2. Design of the Echelle Spectrometer......Page 242
3. Laboratory Measurements......Page 243
References......Page 245
2. The Auger experiment......Page 246
4. The energy spectrum......Page 249
5. Anisotropy studies......Page 253
References......Page 255
1. Introduction......Page 256
4.1 NaI(TI) measurements......Page 257
4.3 Hybrid Telescope......Page 258
4.3.2 Muon flux and Baradello Hill shape......Page 259
References......Page 260
1. Present activities on acoustic neutrino detection......Page 261
2. Acoustics detectors in NEMO Phase I......Page 262
3. Acoustics on NEMO Phase 2......Page 264
References......Page 265
1. Introduction......Page 266
3.1. Binned methods......Page 267
3.2. Unbinned methods......Page 268
References......Page 270
1. Introduction......Page 271
3. The forward beam monitor......Page 272
References......Page 274
1. Introduction......Page 275
2. The Optical Module......Page 276
3.1. The Hvbrid Solution......Page 278
3.2. The Multi - PMT Solution......Page 279
3.3. The Direction-Sensitive Optical Module......Page 280
References......Page 282
1. Introduction......Page 284
2. Setup......Page 285
4. Measurement of high-energy cosmic rays......Page 286
References......Page 288
1. Introduction......Page 289
2. The monitor system......Page 290
References......Page 293
1. Introduction......Page 294
2. NEMO 3 detector......Page 295
4.1. 2u decay......Page 296
4.2. Ov decay......Page 297
References......Page 298
Search for Solar Axions with the CAST-Experiment......Page 299
2. The Experiment......Page 301
3. Status and Results......Page 302
References......Page 303
1. Introduction......Page 304
3.1. Optical detector......Page 305
3.2. The cluster DAQ system......Page 306
3.3. Time synchronization system......Page 307
Refereces......Page 308
1. Introduction......Page 309
3. Detector performance......Page 310
4. Status of construction and operation......Page 311
5 . Data analysis......Page 312
References......Page 313
Calorimetry......Page 314
1. The Large Hadron Collider......Page 316
3. The Atlas experiment......Page 317
5.1. The Atlas electro-magnetic calorimeter......Page 318
5.3. Detector performance and status......Page 319
6.2. The CMS hadronic calorimeter......Page 320
7. The LHCb experiment......Page 321
References......Page 322
1. Overview of the CDF trigger system......Page 323
2. CDF Calorimeter trigger......Page 324
3. L2 Calorimeter Trigger upgrade......Page 325
4. Clustering Algorithms and Results......Page 326
References......Page 327
1. Introduction......Page 328
3. ATLAS Calorimeter......Page 329
4. The LVL2 Electron and Photon Algorithm......Page 330
5. Application to Cosmic Data......Page 331
References......Page 332
2. The Beam Test Facility in Frascati and the setup......Page 333
3. Results from the BTF beam test......Page 334
4. First results from the cosmic ray test......Page 336
References......Page 337
1. Introduction......Page 338
2. Measurement at the The Svedberg Laboratory......Page 339
References......Page 342
1. Introduction......Page 343
2. Calibration......Page 344
3. Lowering into the cavern......Page 345
References......Page 346
1. Introduction......Page 348
2. Test Beam Effort in 2006 and 2007......Page 349
4. HCAL Upgrades......Page 351
References......Page 352
1. Introduction......Page 353
2. The PHOS description......Page 354
2.2. Module......Page 355
3. Beam-test results......Page 356
References......Page 357
1. The ATLAS Forward Calorimeter......Page 358
2. Forward Calorimeter Beam Test......Page 360
References......Page 362
The Measurement of Spectral Characteristics and Composition of Ra- diation in ATLAS with MediPix2-USB Devices......Page 363
2. The Medipix2-USB device......Page 364
3. Medipix2-USB in ATLAS......Page 365
4.2. Neutrons......Page 366
4.3. Muons andpwns......Page 367
5. Charge sharing......Page 368
6. Conclusions......Page 369
References......Page 370
1. Challenges and choices......Page 371
2.1. Detector response......Page 372
2.2. Energy resolution......Page 373
References......Page 375
Assessment of the Cerenkov light produced in a PbWO4 crystal by means of thestudy of the timestructureof the signal......Page 376
2.1. Signal timing properties......Page 377
2.2. The qRatio method......Page 379
References......Page 380
1. Introduction......Page 381
2. The LUCID Detector......Page 382
2.1. The Detector Design......Page 383
2.2. Experimental beam and radiation test results......Page 385
References......Page 386
1. The Electromagnetic CALorimeter......Page 388
3. Experimental setup at the 2006 test beam......Page 389
4. The single crystal technique (Sl)......Page 390
6. Intercalibration with cosmic rays......Page 391
References......Page 392
1. Introduction......Page 393
2. Basic performance of the 1600 pixel MPPC......Page 394
3. The Scintillator-strip Electromagnetic Calorimeter Prototype......Page 396
References......Page 397
1. The Tile Hadron Calorimeter Prototype......Page 398
2. Silicon Photomultiplier......Page 399
2.2. Calibration and Monitoring......Page 400
3.1. First Physics Results......Page 401
References......Page 402
1. Introduction......Page 403
2.1. Selection Eficiency and Purity......Page 404
3. Calibration with + Decays......Page 405
3.2. O Calibration in Test Beams......Page 406
References......Page 407
High Energy Physics Experiments......Page 408
1. Introduction......Page 410
3. Test on crates and readout electronics......Page 411
4. Test on Supermodules......Page 412
References......Page 414
1. The future of Accelerator Neutrino Physics and of Standard Model Precision Tests......Page 415
2. Theoretical Framework......Page 416
3.1. Physical situation and experimental caveats......Page 417
3.2. Main steps and results of the analysis......Page 418
References......Page 419
1. Two Physics Cases......Page 420
2. The Need for Cooling......Page 421
3. MICE: the Muon Ionization Cooling Experimenta......Page 422
3.1. Beamline......Page 424
3.2. Particle Identification Detectors (PID)......Page 425
3.3. Tracking Spectrometers......Page 426
3.4. The Cooling Cell......Page 427
5 . Schedule......Page 428
References......Page 429
1. Introduction......Page 430
2. The ATLAS strategy......Page 431
3.1. Concept......Page 432
3.2. Calibration......Page 433
References......Page 434
1. Introduction......Page 435
2. The CMS superconducting solenoid......Page 436
4.1. Thermal measurements......Page 437
5.1. R&D made so far......Page 438
5.3. Next steps in the CMS Conductor improvement......Page 439
References......Page 440
1. The CMS experiment......Page 441
2. Commissioning strategy......Page 445
2.1. Subdetector local commissioning......Page 446
2.2. Magnet commissioning before lowering......Page 448
2.3. Global runs......Page 450
References......Page 452
1. Introduction......Page 453
3. Detector Description......Page 454
5 . Validation......Page 455
6. Performance......Page 456
References......Page 457
CMS Data and Workflow Management System......Page 458
2.1. CMS catalogues......Page 459
2.3. Data placement and transfer system......Page 460
3.2. Tier-0 workflow......Page 461
References......Page 462
2. Experimental requirements......Page 463
3. Photon. Vetoes......Page 464
4. Large Angle Vetoes......Page 465
5. The tests......Page 466
References......Page 467
1. The CDF Silicon Detector in Run I1......Page 468
2. Radiation Damage......Page 469
3. Infrastructure Aging......Page 471
References......Page 472
Implementation and performance of the ATLAS Trigger Muon "Ver- tical Slice"......Page 473
2. Level 1 trigger......Page 474
4.1. Efficiency from Z pp sample......Page 475
4.3. A trigger chain example......Page 476
References......Page 477
1.1. Monolithic Active Pixel Sensors in High Energy Physics......Page 478
1.2. The sparszjication algorithms......Page 479
2.1. Software based on-line sparsification......Page 480
2.2. Hardware based - real time sparsification......Page 481
References......Page 482
1. Introduction......Page 483
2. Commissioning using Cosmic rays: At the surface......Page 484
3. Commissioning using Cosmic rays: In the pit......Page 485
References......Page 487
2. Short review on strange quark matter (SQM)......Page 488
3. Effects in silicon due to heavy ions and SQM......Page 489
4. Results and discussions......Page 490
References......Page 492
1. Introduction......Page 493
3. Electron and photon selection......Page 494
4. Performance of electron and photon trigger......Page 495
5 . Strategy at start up......Page 496
References......Page 497
1. Introduction......Page 498
3. The Laser Monitoring System......Page 499
4. Performance Results from Test Beams......Page 500
References......Page 502
1.1. The Proposed International Linear Collider......Page 503
2.1. Single Cell Manufacturing Process......Page 505
2.2. Surface Treatment of the IS series......Page 506
2.3. Vertical testing of the IS cavities......Page 507
References......Page 512
2. LHC Preparations......Page 513
2.2. Planning......Page 514
3. Superconducting RF cavity development for the ILC......Page 515
4. Developments toward muon beam accelerators......Page 516
Acknowledgements......Page 517
2.1. Mechanical Design......Page 518
2.3. Read- Out Electronics......Page 519
3.2. Cosmic Rays......Page 520
4. Commissioning and Outlook......Page 521
References......Page 522
1. Introduction......Page 523
2. Experimental Set-up......Page 524
3. Preliminary Analysis and Simulation......Page 525
4. Data Analysis......Page 526
References......Page 527
1. Introduction......Page 528
2. Overview of the SiD Detector......Page 529
3. The SID Electromagnetic Calorimeter......Page 530
4. The Chronopixel Option......Page 534
References......Page 537
2. Experimental set up and methods......Page 538
4. Efficiency studies......Page 539
5. Cluster size study......Page 540
References......Page 542
Implementation and performance of the tau trigger in the ATLAS experiment......Page 543
1.1. The ATLAS Level 1 tau trigger......Page 544
1.2. High Level Tau Trigger......Page 545
2. Tau trigger menus for physics......Page 546
3. Conclusions......Page 547
Radiation Damage......Page 548
1. Introduction......Page 550
2. Experiment......Page 551
3. Conclusions......Page 555
References......Page 556
1.1. PEFCs generalities......Page 557
1.2. Aim of the work......Page 558
2.2. Irradiation......Page 559
3. Results and discussion......Page 560
4. Conclusions......Page 562
References......Page 563
1. Introduction......Page 564
2. Samples characteristics and experimental measurements......Page 565
3.1. Temperature Scan of non-irradiated Samples......Page 566
3.2. Temperature scan of irradiated Samples......Page 567
References......Page 570
2. Thin-film optical samples......Page 571
3. Radiation test and results......Page 572
References......Page 575
1. Introduction......Page 576
3. Radiation-Hardness of VCSEL and PIN Arrays......Page 577
References......Page 580
1. Introduction......Page 581
2. The Beam Calorimeter BeamCal......Page 582
3. Sensor Materials under Investigation......Page 583
3.1. CVD Diamond......Page 584
4. Conclusion......Page 585
References......Page 586
1. Introduction......Page 587
3. Results and Discussion......Page 588
References......Page 591
1. Introduction......Page 592
2. Radiation damage and recovery monitoring with reflected light: Raddam principle......Page 593
3. The damage recovery at 450 nm......Page 594
4. On line measurement of a Im long fibre in a 24 GeV/c proton beam using HF-DAQ......Page 595
References......Page 596
1. Introduction......Page 597
3. Measurements and Results......Page 598
References......Page 601
1. Irradiation conditions and experimental setup......Page 603
3. Pre and post-irradiation noise measurements......Page 604
References......Page 607
1. Introduction......Page 608
2. Results and discussion......Page 610
References......Page 614
1. Introduction......Page 615
2. Simulations......Page 616
4. Comparisons with an Analytic Model......Page 617
References......Page 619
Radiotherapy and Medical Instrumentations......Page 620
1. Introduction......Page 622
2. Materials and Methods......Page 623
3. Results......Page 624
References......Page 626
1. Introduction......Page 627
3. Basic operation procedure......Page 628
4. Experimental results......Page 630
References......Page 632
Introduction.......Page 633
1. Characterization of SiPM......Page 634
2.2. I- V measurement......Page 635
2.4. Optical cross-talk......Page 636
2.6. Analysis of Photon spectrum......Page 637
2.7. Linearity and dynamic range definition......Page 638
2.8. PDE evaluation......Page 639
References......Page 640
1. Identifying Social Objectives......Page 641
3. Verifying that the Social Objective is Achieved......Page 642
5. Comparison of Current Medical Diagnostic Technologies......Page 643
7. A Solution for Safe Screening Targeted at Early Cancer Detection in Existence, But Ignored for Ten Years......Page 645
8. Discovery Validated by Experimental Results Obtained by Siemens......Page 646
9. Further Innovations That Must Be Considered......Page 648
10. Reducing health care costs while saving more lives......Page 651
11. Rethinking the Direction of Research to Avoid Past Errors......Page 652
11.1. Faulty models are built on contradictions......Page 653
13. Conclusions......Page 654
References......Page 656
1. Introduction......Page 657
1.2. Phase-shiyt contrast enhanced imaging......Page 658
2. Biological samples used for imaging......Page 659
References......Page 661
1. Introduction......Page 662
2.1. Pulsed low energy electron source......Page 663
References......Page 666
1. Introduction......Page 667
3. Simulation of electron trajectories in silicon......Page 668
5. Detective Quantum Efficiency (DQE)......Page 669
6. Single Particle Imaging......Page 670
7. Future Prospects for Medipix2......Page 671
8. Applications to x-ray crystallography......Page 672
9. Pixel Detectors, MAPS......Page 673
11. Summary and outlook for MAPS......Page 675
References......Page 676
Ultra-fast Timing and the Application of High Energy Physics Tech- nologies to Biomedical Imaging......Page 677
2. From HEP to medical imaging......Page 678
4. Time of flight for PET imaging......Page 679
5. Reaching the ultimate timing resolution......Page 680
References......Page 682
First Results of Small Animal Imaging SPECT Detector for Cardio- vascular Disease Studies on Mice......Page 683
1. Introduction......Page 684
3. Experimental method......Page 685
4. Results......Page 686
Referenees......Page 687
Introduction......Page 688
1.1. The regulated cascode structure......Page 689
1.3. Noise analysis......Page 690
2. Quantum Efficiency measurements......Page 691
References......Page 692
1. Introduction......Page 693
2.1. Technical description of the different imaging devices......Page 694
2.1 .l. Primatom......Page 695
2.1.3. kV cone beam......Page 696
2.2. MV cone beam......Page 697
2.4. Motion management......Page 698
3.3. Motion management......Page 699
4. Conclusion......Page 701
References......Page 702
Neutron Imaging in a Hospital Environment.......Page 703
1. Introduction......Page 704
2. The detector and the setup......Page 705
3. Results......Page 706
References......Page 707
1. Introduction......Page 708
2. Helical Tomotherapy......Page 709
3. Conebeam CT......Page 712
4. Summary......Page 715
References......Page 716
A Double Layer Silicon Detector for Single Photon Counting......Page 717
2. Detection system......Page 718
3. Results......Page 719
4. Conclusions......Page 721
References......Page 722
1. Introduction......Page 723
2. Materials and methods......Page 724
3. Results......Page 725
References......Page 727
1. Introduction......Page 728
2. Astatine211 (llAt)......Page 729
3. Rhenium-186g (18 Re)......Page 730
References......Page 732
Software Applications......Page 734
1.1. GLAST LAT......Page 736
1.2. Cassini LEMMS......Page 737
2. Planetary scale simulation......Page 739
3. Micro-dosimetry simulation......Page 740
5.1. Tessellated solid......Page 741
5.3. Built-in scoring tools......Page 742
6. Conclusions......Page 743
References......Page 744
1. The INTEGRAL Mission......Page 746
3.1. The Galactic Centre......Page 747
3.2. Compact Objects......Page 748
3.3. New Sources found by INTEGRAL......Page 749
3.4. Active Galactic Nuclei and the CXB......Page 750
3.5. Gamma-Ray Bursts and the IBAS system......Page 751
4. Outlook......Page 752
References......Page 753
1. The ATLAS Inner Detector......Page 756
2. Strategy and tests for track-based alignment of the Inner Detector......Page 757
2.2. Alignment with cosmics tracks......Page 758
2.3. Alignment with simulated data......Page 759
References......Page 760
1. Introduction......Page 761
3. The New Generation Data Transfer System......Page 762
4. Performance......Page 766
Acknowledgments......Page 768
References......Page 769
1. Introduction......Page 770
2. Language description......Page 772
References......Page 774
1. Introduction......Page 775
1.1. Atlas Production System......Page 776
2. Distributed Analysis Strategy......Page 777
2.1. Distributed analysis using the production system and GANGA......Page 778
References......Page 779
1. The Muon Ionisation Cooling Experiment......Page 780
2. G4MICE......Page 781
2.3. Persistency......Page 782
2.5. Experimental models......Page 783
2.6. Representations......Page 784
3. Software Performance......Page 785
4. Conclusions......Page 786
References......Page 787
1. CMS Tracking Detector......Page 788
3. The Tracker Control System......Page 789
3.1. Hierarchy and Finite State Machine......Page 790
References......Page 792
1. Introduction......Page 793
2.1. General view......Page 794
2.2. System implementation......Page 795
3. Performance......Page 796
References......Page 797
1. Introduction......Page 798
2. Equipment databases management......Page 799
2.5. Survey Database......Page 800
4. Conclusions and future work......Page 801
References......Page 802
1. Introduction......Page 803
2. Comparison of HARP data and Geant4 generators......Page 804
3. Sanford-Wang parameterization......Page 806
References......Page 807
1. Introduction......Page 809
2.2. Production and transportation of secondary particles in the lunar subsurface......Page 810
3. Results and discussion......Page 811
5. Reference......Page 813
1. Introduction......Page 814
2. Electron-positron pair track reconstruction......Page 815
2.1. Results......Page 816
References......Page 818
1. Introduction......Page 819
2. Motivation......Page 820
4. Parameterisation Method......Page 821
7. Full and Fast Simulation Comparison......Page 822
References......Page 823
1.1. The Place of Monte Carlo in Medical Physics......Page 824
1.2. Why Some Medical Physicists Choose Geant4......Page 825
2.1. Characterizing Machines and Sources......Page 826
2.2. Treatment Planning and Retrospective Studies......Page 827
3.1. Technical Challenges......Page 828
3.2. Funding Challenges......Page 829
4. Conclusion......Page 830
References......Page 831
1. Introduction......Page 832
3. Monitoring the ALICE-TOF detector data......Page 834
References......Page 836
2. The simulation chain......Page 837
3. Simulation validation......Page 839
References......Page 840
1. Introduction on the ATLAS experiment at LHC......Page 841
2. Event Selection (Trigger) and Streams......Page 842
3. Conditions and Configuration Databases......Page 843
3.1. Conditions Database......Page 844
References......Page 845
1. Introduction......Page 846
2. Calculation method......Page 847
3.1. Depth profdes of neutron capture reactions in the lunar subsurface......Page 848
3.2. Gamma-ray flux due to 1H(n, ypD and28Si(n, yy9Si......Page 849
References......Page 850
Space Experiments and Heliosphere......Page 852
2. Diffusion in heliosphere and in the interstellar space......Page 854
3. Results......Page 857
References......Page 858
1. Introduction......Page 859
3. Thermal Measurements and Simulations......Page 860
4. Optical Measurements and Simulations......Page 862
References......Page 863
1. Introduction......Page 864
3.1 Cern PS set-up......Page 865
4.1 Tracker......Page 866
4.2 Calorimeter......Page 867
References......Page 868
2. Experiment......Page 869
3. Overview of the simulations......Page 870
4.1. Angular and energy distribution......Page 871
4.2. Mass resolution......Page 872
5. Conclusion......Page 873
References......Page 874
The PAMELA space mission......Page 875
2. PAMELA scientific objectives......Page 876
3. The PAMELA apparatus......Page 877
4, In Flight operations, data handling and analysis......Page 879
References......Page 881
A Large Cavity Gamma-Ray Spectrometer for Measurement of Cos- mogenic Radionuclides in Astromaterials by Whole Rock Counting......Page 882
2. Experimental set-up......Page 883
3. New data acquisition system......Page 884
References......Page 886
1.2. Lense-Thirring Effect – (L-TE)......Page 887
2.1. Laser Ranging Accuracy......Page 888
3.1. Background - Solar Glint Approach (SGA)......Page 889
4.3. LAGEOS II observations......Page 890
7. Acknowledgements......Page 891
1. Cosmic abundances and experimental data......Page 892
2. Magnetospheric Transmission Function......Page 893
3. Ions fluxes and abundances inside the magnetosphere......Page 895
References......Page 897
1. Introduction......Page 898
2. Stochastic 2D Monte Carlo model......Page 899
4. Results......Page 900
5. Conclusions......Page 901
References......Page 902
1. Introduction......Page 903
2. The PoGOLite prototype......Page 905
3. Background suppression......Page 906
References......Page 907
1. Introduction......Page 908
3.1. Photon Angular Dispersion......Page 909
3.2. Detector response to electrons......Page 911
References......Page 912
1. Introduction......Page 913
2.1. Cryornagnet......Page 914
2.3. The Time of Flight system......Page 915
2.6. The Transition Radiation Detector......Page 916
References......Page 917
1. The AMS-02 experiment......Page 918
2. The AMS RICH detector......Page 919
3. RICH prototype tests......Page 920
4. System monitoring and pre-assembly testing......Page 921
References......Page 922
1. Introduction......Page 923
2. Cosmic-Ray Observatory Data Taking......Page 924
3. Analysis of the TKR Performance......Page 925
4. Instrument Science Operations Center......Page 926
References......Page 927
The CALET Space Observatory for JEM-EF on the International Space Station......Page 928
2. The CALET Project......Page 929
3.1. Nearby Cosmic Ray Source(s)......Page 931
References......Page 932
Tracking Devices......Page 934
1. Introduction......Page 936
2. Concept of charge dispersion......Page 937
3. Experimental setup......Page 938
4. Experimental Results......Page 939
References......Page 942
1. Introduction......Page 943
2. Detector Description......Page 944
4. Detector Quality Control and Testing......Page 945
5. Detector Performances......Page 947
References......Page 949
1. Introduction......Page 950
2. MimoRomal design......Page 951
3. Sensor characterization......Page 952
3.1. Detailed measurement results for the Mixed matrix......Page 953
References......Page 955
2. Integration procedures......Page 956
3.1. Magnet Test and Cosmic Challenge......Page 959
3.2. Slice Test at TIF......Page 961
References......Page 962
1. Introduction......Page 963
2. The Vertex Locator......Page 964
3. Luminosity measurement......Page 965
5. Ugrade......Page 966
References......Page 967
The CDF II extremely Fast Tracker Upgrade......Page 968
2. The Axial XFT System......Page 969
3. The upgrade of the system......Page 971
References......Page 972
1. Introduction......Page 973
2.3. Some Key Properties of DEPFETs......Page 974
3. Possible ILC Module Geometry......Page 976
4. The new SWITCHER Chip......Page 977
References......Page 979
1. Introduction......Page 980
2.2. RPC ; Resistive Plate Chamber......Page 981
2.3. TGC ; Thin Gap Chamber......Page 982
3. Commissioning status and results......Page 983
References......Page 984
1. Signal Properties......Page 985
2. Tracking......Page 986
3. Detector Efficiency Measurement......Page 987
5. Particle Identification with the Energy Loss Technique......Page 988
References......Page 989
1. Introduction......Page 990
2. TRB board version 1......Page 991
3. TRB board version 2......Page 992
4. Add-on cards......Page 993
References......Page 994
1. Introduction......Page 995
2.2. ERPA: the SciFi tracker......Page 996
2.3. The silicon profilometer......Page 997
3. Measurements......Page 998
References......Page 1000
1. Introduction......Page 1001
3. The ALFA system......Page 1002
5. Characterization of irradiated scintillating fibres......Page 1004
References......Page 1005
2. General description of the Muon Alignment system......Page 1006
3. Link Hardware Alignment MTCC Results......Page 1008
References......Page 1010
1. Introduction......Page 1011
2. The detector......Page 1012
3. The commissioning phase results......Page 1013
4. Preliminary results of the 2007 data taking......Page 1014
References......Page 1015
1. Introduction......Page 1016
2.1. Overview of the chip structure......Page 1017
2.2. Architecture of the on-pixel signal processing......Page 1018
References......Page 1020
1. Introduction......Page 1021
2. Design of the PixelGEM Detector......Page 1022
3. Prototype Test......Page 1024
References......Page 1025
1. Introduction......Page 1026
2. The VELO......Page 1027
4. The Tracking Stations......Page 1028
5. Track Reconstruction Strategies and their Performance......Page 1029
References......Page 1030
1. Forward tracking at PANDA......Page 1031
2. Prototype drift chamber......Page 1032
3. Chamber tests......Page 1034
References......Page 1035
1. Introduction......Page 1036
2. Module design......Page 1037
3. Module production......Page 1038
4. Quality assurance......Page 1039
References......Page 1040
Managing Bias Leakage Currents and High Data Rates in the BABAR Silicon Vertex Tracker......Page 1041
2. Silicon Vertex Tracker......Page 1042
3. Experience in Bias Leakage Currents......Page 1043
4. Managing High Data Rates......Page 1044
References......Page 1045
1. Introduction and Design......Page 1046
2.1. Ions in the TPC......Page 1047
2.2. Field Cage Shorts......Page 1048
4. dE/dx......Page 1049
References......Page 1050
1. ATLAS pixel detector......Page 1051
2.1. Service Test......Page 1052
2.2. Calibration......Page 1053
2.4. Connectivity Test......Page 1054
References......Page 1055
List of participants......Page 1056