دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Second ed.] نویسندگان: Gerd Balzer, Christian Schorn سری: ISBN (شابک) : 9783030908546, 3030908542 ناشر: سال نشر: 2022 تعداد صفحات: [465] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Asset management for infrastructure systems : energy and water به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدیریت دارایی برای سیستم های زیرساخت: انرژی و آب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک نمای کلی از فرآیندهای مدیریت دارایی برای تاسیسات مختلف، با تاکید ویژه بر انرژی و آب ارائه می دهد. این کتاب ملاحظات عملی مهمی را در رابطه با توسعه ساختارها و رویههای رقابتی جدید برای تضمین عرضه کافی انرژی و آب در یک محیط تنظیمشده، با استفاده از سنگ بنای فنی و اقتصادی به وضوح تعریف شده، در اختیار خوانندگان قرار میدهد. از یک سو، صاحبان دارایی انتظار منافع مناسبی از سرمایه گذاری و رشد کسب و کار خود دارند. از سوی دیگر، رگولاتورها بیشتر بر تامین قابل اعتماد و مقرون به صرفه مشتری تمرکز می کنند. این کتاب نشان می دهد که چگونه می توان این دیدگاه های مختلف را در فرآیند طراحی ساختارهای جدید در نظر گرفت و چگونه شفافیت سازمانی را تضمین کرد. این اصول اساسی و شرایط مرزی برای اطمینان از استفاده بهینه از منابع در یک شبکه را تشریح می کند، مسائل مربوط به عمر سرویس تجهیزات، چشم انداز فناوری اطلاعات و برنامه های کامپیوتری، مدیریت هزینه های عملیاتی، و استراتژی های سرمایه گذاری و نگهداری را پوشش می دهد، و تأثیر آنها را بر سازماندهی نشان می دهد. شرکت. این ویرایش دوم به طور کامل اصلاح شده و به روز شده، شامل اطلاعات گسترده ای در مورد استاندارد IEC (IEC/TS 63060) و پوشش روش های تحقیق عملیات با تمرکز بر بهینه سازی وظایف تعمیر و نگهداری است. علاوه بر این، بحثی در مورد محیط سیاسی با تاکید ویژه بر وضعیت اروپا و "معامله سبز" گنجانده شده است: به طور خاص، برخی اقدامات برای مقابله با موضوع انتقال انرژی ارائه شده است. آخرین، اما نه کم اهمیت، یک فصل کاملاً جدید در مورد ارزیابی شرایط گنجانده شده است.
This book offers a broad overview of asset management processes for different utilities, with a special emphasis on energy and water. It provides readers with important practical considerations concerning the development of new competitive structures and procedures for guaranteeing a sufficient supply of energy and water in a regulated environment, using clearly defined technical and economic cornerstones. On the one hand, asset owners expect suitable interests from their investment and business growth; on the other hand, regulators focus more on a reliable and cost-effective customer supply. This book shows how to take into consideration these different perspectives in the process of designing new structures, and how to guarantee organizational transparency. It describes essential principles and boundary conditions for ensuring the optimal use of resources in a network, covering issues relating to equipment service life, IT landscape and computer programs, operational costs management, and investment and maintenance strategies, highlighting their impact on the organization of the company. This thoroughly revised and updated second edition, includes extensive information about IEC standard (IEC/TS 63060), and cover operation research methods focusing on the optimization of the maintenance tasks. Furthermore, a discussion on the political environment has been included, with a special emphasis on the European situation and the “Green Deal”: specifically, some measures to cope with the topic of energy transition are presented. Last, but not least, a brand-new chapter on condition assessment has been included.
Preface to the Second Edition Preface to the First Edition Contents 1 Introduction 1.1 Basis of the Asset Management 1.2 Development of the Investment Management 1.3 Legal Framework for Infrastructure Companies 1.3.1 Energy Industry Act (EnWG) 1.3.2 Ordinance on Incentive Regulation (ARegV) 1.3.3 Law for the Expansion of Renewable Energies (Renewable Energy Act; EEG) 1.3.4 Act on Metering Point Operation and Data Communication in Smart Energy Grids (MSbG) 1.3.5 IT Security Catalog (IT-SIKAT) 1.3.6 Clean Energy Package CEP of EC 1.4 Motivation for Asset Management 1.5 Challenges of Transmission and Distribution System Operators (TSO and DSO) 1.6 Activities of the Asset Management 1.7 Conclusion References 2 Tasks of the Asset Management 2.1 Development of Strategies 2.1.1 Overview of Maintenance Strategies 2.1.1.1 Definitions 2.1.1.2 Basis of Maintenance Strategies 2.1.1.3 Corrective Maintenance (CM) 2.1.1.4 Time-Based Maintenance (TBM) 2.1.1.5 Condition-Based Maintenance (CBM) 2.1.1.6 Priority-Based or Reliability-Centered Maintenance (RCM) 2.1.1.7 Risk-Based Maintenance 2.1.1.8 Resultant Assessment of Maintenance Strategies 2.1.2 RCM Strategy 2.1.2.1 Definitions 2.1.2.2 Procedure 2.1.2.3 Example: Overhead Line Section 2.1.2.4 Assessment of a Maintenance Measure 2.1.2.5 Example to Investigate an Optimal Maintenance Strategy 2.1.3 Maintenance by Fuzzy Logic 2.1.3.1 Introduction to Fuzzy Logic 2.1.3.2 Condition Assessment Procedure with Fuzzy Logic [19] 2.1.3.3 Technical Rules for the Knowledge Processing 2.1.3.4 Result: Secondary Substation 2.1.3.5 Conclusion 2.1.3.6 Condition Assessment of Equipment with the Help of Fuzzy Logic 2.1.4 FMEA Method 2.1.4.1 Methodological Basics 2.1.4.2 Data Preparation 2.1.4.3 Example: Analysis 2.1.4.4 FMEA Evaluation of a Substation 2.1.5 Aging Behavior of Equipment 2.1.5.1 General Fault Behavior of Equipment 2.1.5.2 Analysis of the Fault Behavior and Related Measures 2.1.5.3 Data and Equipment Model of Circuit-Breakers 2.1.5.4 Fault Behavior of Circuit-Breakers 2.1.5.5 Assessment of the Results 2.1.5.6 Consideration of the Aging Behavior During the Condition Assessment 2.1.6 Lifetime of Electrical Equipment 2.1.7 Strategy for System Development 2.1.7.1 General 2.1.7.2 Forecast 2.1.7.3 Planning Assumptions 2.1.7.4 Considerations of the Target Network Planning 2.1.7.5 System Planning of Smart Grids 2.1.8 Renewal Strategy 2.1.8.1 General 2.1.8.2 Criteria of Renewal 2.1.8.3 Decision Levels 2.1.8.4 Modeling of the Technical Organizational Level 2.1.8.5 Assessment of the Models 2.1.9 Short- and Long-Term Considerations 2.1.10 Project Development and Assignment 2.2 Developing and Securing Standards 2.2.1 Intern Regulations 2.2.2 National and International Standardization Processes 2.2.3 ISO Standard 55000 ff 2.2.4 Standard for Maintenance of Electrical Systems DIN VDE 0109 and IEC/TS 63060 2.2.5 Evaluation of ISO 55000 and DIN (VDE 0109) Standards 2.2.6 IEC TC 123 2.3 Securing the Resources 2.3.1 Material and Service 2.3.2 Operating Staff 2.3.3 Reserve and Special Situations 2.4 Conclusion References 3 Control Functions 3.1 Economic Control Functions 3.1.1 Budget Planning and Structure 3.1.2 Budget Control 3.1.3 Economic Considerations 3.1.3.1 LCC and TCO 3.1.3.2 Life Cycle Costs 3.1.3.3 Definitions 3.1.3.4 Example: Life Cycle Costs of a 380 kV Air Insulated Substation 3.1.3.5 Example: Life Cycle Costs of a 110 kV Overhead Line System 3.2 Technical Control Functions 3.2.1 Failure Statistics 3.2.2 Data Files of Damages 3.2.3 Assessment of the Network Asset Value 3.2.4 Assessment of Condition Data 3.2.5 Monitoring/Diagnosis 3.2.5.1 Condition Monitoring Using the Example of a Circuit-Breaker 3.2.5.2 Efficiency of Diagnosis and Monitoring Procedures 3.2.5.3 Assessment 3.2.6 Risk Analyses 3.2.6.1 Procedure for the Risk Management 3.2.6.2 Determination of a Risk 3.2.6.3 Extended Risk Assessment 3.2.6.4 Derivation of a Risk-Optimized Maintenance Strategy 3.2.6.5 Value-at-Risk Method 3.2.6.6 Application of the VaR Method to a Transmission System 3.2.6.7 Information for the Assessment 3.2.6.8 Example for the Implementation of a Risk-Based Maintenance 3.3 Indicators 3.3.1 Target Values of the Participating Groups (Stake Holders) 3.3.2 Selection of Indicators in Case of a Maintenance Measure 3.3.3 Benchmarking 3.4 Asset Simulation 3.4.1 Development of a Long-Term Strategy 3.4.1.1 Condition Assessment of Equipment 3.4.1.2 Aging Model 3.4.1.3 Cause-Effect Chains 3.4.1.4 Markov Process 3.4.2 Input Data 3.4.3 Application of Dynamic Simulation 3.4.4 Simulation: Condition Assessment 3.4.4.1 High-Voltage Circuit-Breakers 3.4.4.2 Medium-Voltage Cable 3.4.5 Simulation: Statistical Failure Rate 3.4.6 Conclusion Asset Simulation 3.5 Optimization of Maintenance 3.5.1 General 3.5.2 Basics of the Calculation 3.5.2.1 Equipment Data, Grid Topology, Load Flow 3.5.2.2 Maintenance and Renewal Strategies 3.5.2.3 Age-Dependent Failure Rates of Equipment 3.5.2.4 Calculation of Energy not Supplied or not Transmitted 3.5.2.5 Maintenance Costs 3.5.2.6 Renewal Costs 3.5.3 Objective Functions of the Optimization 3.5.4 Optimization Model: Knapsack Problem 3.5.5 Solving a Problem with Different Objective Functions 3.5.5.1 Optimization of a Single-Objective Problem 3.5.5.2 Optimization of a Multi-objective Problem 3.5.6 Algorithms for the Optimization of Single-Objective Problems 3.5.6.1 Heuristic Solutions of the Knapsack Problem 3.5.6.2 Ant Algorithm (Colony Optimization, ACO) 3.5.7 Algorithms for the Optimization of Multicriteria Problems 3.5.7.1 Game-Theoretic Optimization 3.5.7.2 Particle Swarm Optimization 3.5.7.3 Genetic Algorithms 3.5.8 Evaluation and Example in a 220 kV Grid 3.5.9 Example in a 110 kV Grid 3.5.9.1 Basics of the Calculation 3.5.9.2 Example 3.6 Conclusion References 4 Integration into the Business Organization 4.1 Functional Allocation in the Area of Asset Management 4.2 The Role Model of the Management of Infrastructures 4.3 Corporate Organization 4.3.1 Decision Criteria 4.3.2 Service Provider Model 4.3.3 Network Manager Model 4.3.4 Asset Manager Model 4.3.5 Asset Owner Model 4.4 Influence of the Infrastructure Systems on the Organization 4.4.1 Economies of Scale of Systems 4.4.2 Effect of System Homogeneity of Infrastructure 4.5 Conclusion References 5 System Landscape in the Area of Asset Management 5.1 Asset Management Data 5.2 Enterprise Resource Planning (ERP Systems) 5.2.1 Asset Documentation (AD) 5.2.2 Finance Module 5.2.3 Operation and Maintenance Module 5.2.4 Project Module 5.2.5 Procurement and Material Module 5.2.6 Staff Module 5.3 Geographic Information Systems (GIS) 5.4 Asset Strategy Planning Systems (ASP) 5.5 Project Prioritization Systems (PPS) 5.6 Mobile Workforce 5.7 Network Planning Systems and Network Control Systems 5.8 Conclusion References 6 Statistic 6.1 Probability 6.1.1 Simple Probability 6.1.2 Conditional Probability 6.1.3 Venn Diagrams 6.1.4 Rules of Probability Calculation 6.2 Characteristic of Probability Distributions 6.2.1 Expected Value—Mean Value 6.2.2 Median Value 6.2.3 Variance (Statistical Spread) and Standard Deviation 6.2.4 Spread 6.2.5 Scaling 6.2.6 Density Function 6.2.7 Distribution Function 6.2.8 Hazard (Failure) Rate of Equipment 6.2.9 Correlation 6.2.10 Confidence Interval, Random Sample 6.3 Equicontinuous Distribution 6.3.1 Gaussian Distribution (Normal Distribution) 6.3.2 Exponential Distribution 6.3.3 Weibull Distribution 6.3.4 Further Distribution Functions 6.4 Discrete Random Variable 6.4.1 Poisson Distribution 6.4.2 Binominal Distribution 6.5 Best Fit Calculation 6.5.1 Measurement Errors 6.5.2 Regression Function 6.6 Chi-Squared Test (χ2-test) 6.7 Theory of Evidence (Theory of Belief Functions) 6.8 Conclusion References 7 Condition Assessment 7.1 Equipment of Air-Insulated Substation (High Voltage) 7.1.1 General 7.1.2 Power Transformer 7.1.3 Circuit-Breaker 7.1.4 Disconnector/Earthing Switch 7.1.5 Current and Voltage Transformer 7.1.6 Surge Arrester 7.1.7 Protection 7.1.8 Control 7.1.9 Scaffold (Air Insulated) 7.1.10 Foundation (Air-Insulated, Power Transformer) 7.1.11 Air-Insulated Gantry 7.1.12 Busbar 7.1.13 Infrastructure 7.1.14 Remote Control System/Telephone System 7.1.15 Auxiliary Power Transformer 7.1.16 Auxiliary MV Switchgear 7.1.17 Auxiliary LV Switchgear 7.1.18 Auxiliary DC Voltage Supply 7.1.19 Auxiliary Emergency Power Unit 7.2 Gas-Insulated Substation (High Voltage) 7.2.1 General 7.2.2 Power Transformer 7.2.3 GIS Circuit-Breaker 7.2.4 GIS Disconnector/Earthing Switch 7.2.5 AIS Current and Voltage Transformer 7.2.6 GIS Current Transformer 7.2.7 GIS Voltage Transformer (Inductive, Encapsulated) 7.2.8 GIS Surge Arrester (Encapsulated) 7.2.9 AIS surge Arrester 7.2.10 GIS Bushings (SF6/Air or SF6/Oil) 7.2.11 GIS Housing 7.2.12 Protection 7.2.13 Control 7.2.14 Scaffold (Air Insulated) 7.2.15 Foundation (Air-Insulated, Power Transformer) 7.2.16 Infrastructure 7.2.17 Building 7.2.18 Remote Control System/Telephone System 7.2.19 Auxiliary Power Transformer 7.2.20 Auxiliary MV Switchgear 7.2.21 Auxiliary LV Switchgear 7.2.22 Auxiliary DC Voltage Supply 7.2.23 Auxiliary Emergency Power Unit 7.3 Overhead Line (High Voltage) 7.3.1 Tower 7.3.2 Foundation (Tower) 7.3.3 Line Conductor 7.3.4 Ground Wire 7.3.5 Insulators, Clamps, Joints 7.4 Substation (Medium Voltage) 7.4.1 General 7.4.2 Switchgear Panel/Construction 7.4.3 Circuit-Breaker 7.4.4 Switch-Disconnector 7.4.5 Disconnector/Earthing Switch 7.4.6 Voltage Transformer 7.4.7 Current Transformer 7.4.8 Protection, Control, Monitoring 7.4.9 Auxiliary Voltage Supply 7.4.10 Remote Control System/Telephone System 7.4.11 Power Transformer (Medium/Low Voltage) 7.4.12 Arc Suppression Coil/Petersen Coil (Medium Voltage) 7.4.13 Ripple Control Technology (Secondary Part) 7.4.14 Building 7.5 Switching Substation (Medium Voltage) 7.5.1 Total Detection 7.5.2 Switchgear Panel/Panel Construction 7.5.3 Voltage Transformer 7.5.4 Current Transformer 7.5.5 Disconnector/Earthing Switch 7.5.6 Switch-Disconnector 7.5.7 Power Transformer (Medium/Low Voltage) 7.5.8 Building 7.5.9 Tower 7.5.10 Low-Voltage Installation 7.6 Cable (Medium Voltage) 7.7 Motor (High Voltage, Above 250 kW) 7.8 Conclusion References