دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Mohamed A. El-Reedy
سری:
ISBN (شابک) : 0128245409, 9780128245408
ناشر: Gulf Professional Publishing
سال نشر: 2022
تعداد صفحات: 415
[418]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 26 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Asset Integrity Management for Offshore and Onshore Structures به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدیریت یکپارچگی دارایی برای سازه های فراساحلی و خشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
داراییهای نفت و گاز تحت فشار دائمی هستند و مهندسان و مدیران برای اطمینان از ایمن بودن عملیات خود به آموزش مدیریت یکپارچگی و استراتژیها نیاز دارند. به دست آوردن راهنمایی عملی از قبل آموزش داده نمی شود و در حین کار آموخته نمی شود. مدیریت یکپارچگی دارایی سازههای فراساحلی و خشکی یک ابزار آموزشی حیاتی برای مهندسین ارائه میکند تا خطر ایمنی را آماده و کاهش دهند. با شروع یک فصل مقدماتی انتقالی، مرجع به رویکردهای مدیریت یکپارچگی شامل کدها و استانداردها می پردازد. روش های بازرسی، ارزیابی و تعمیر برای خطوط دریایی، FPSO، خشکی و خطوط لوله پوشش داده شده است. رویکردهای فعال پیشنهادی و مدل سازی بازرسی مبتنی بر ریسک نیز گنجانده شده است. مدیریت یکپارچگی ساختارهای فراساحلی و خشکی که با مطالعات موردی، بحثهای دقیق و کاربردهای عملی پشتیبانی میشود، به مدیران نفت و گاز مرجعی برای افزایش عمر دارایی، کاهش هزینهها، و به حداقل رساندن تأثیر بر پرسنل و محیط زیست.
Oil and gas assets are under constant pressure and engineers and managers need integrity management training and strategies to ensure their operations are safe. Gaining practical guidance is not trained ahead of time and learned on the job. Asset Integrity Management of Offshore and Onshore Structures delivers a critical training tool for engineers to prepare and mitigate safety risk. Starting with a transitional introductory chapter, the reference dives into integrity management approaches including codes and standards. Inspection, assessment, and repair methods are covered for offshore, FPSO, onshore and pipelines. Suggested proactive approaches and modeling risk-based inspection are also included. Supported with case studies, detailed discussions, and practical applications, Asset Integrity Management of Offshore and Onshore Structures gives oil and gas managers a reference to extend asset life, reduce costs, and minimalize impact to personnel and environment.
Front Cover Asset Integrity Management for Offshore and Onshore Structures Copyright Dedication Contents About the author Preface Chapter 1: Corrosion effects on offshore and onshore structures 1.1. Introduction 1.2. Corrosion effects on offshore structure 1.2.1. Corrosion in seawater 1.2.2. Steel corrosion in seawater 1.3. Pipelines 1.4. Onshore structure 1.4.1. Black corrosion 1.4.2. Pit formation 1.4.3. Reasons for steel-in-concrete corrosion 1.4.3.1. Carbonation Carbonation propagation rate 1.4.3.2. Chloride attack Chloride propagation 1.4.4. Corrosion rates 1.4.5. Corrosion's effect on spalling of concrete cover 1.4.6. Bond strength between concrete and corroded steel bars 1.4.7. Influence steel bar corrosion on the shear strength References Chapter 2: Integrity management versus reliability 2.1. Introduction 2.2. Principle of reliability 2.2.1. Structure reliability calculation 2.2.1.1. Reliability analysis using first- and second-order methods 2.2.2. Probability in limit states design 2.2.2.1. Equivalent normal distribution 2.2.2.2. Procedure for reliability analysis 2.2.2.3. Reliability index calculation for different codes 2.2.2.4. Monte Carlo simulation technique 2.2.3. Load variables 2.2.4. Structure resistance variables 2.2.5. Concrete strength variations 2.2.6. Steel yield strength variable 2.2.7. The nonbasic variables in design 2.3. Concrete cross-section variation 2.3.1. Uncertainty in steel bars during construction 2.3.2. Variability in the steel size 2.3.3. Reliability approach in EC2 code 2.3.3.1. Design values calibration 2.3.3.2. Reliability verification formats in Eurocodes Consequences classes 2.3.3.3. Engineering design quality in EC 2.3.3.4. Execution quality in EC 2.4. Pipeline reliability analysis 2.4.1. Limit state equation for the pipeline 2.4.2. Reliability model 2.4.3. Determination of corrosion rate 2.5. Offshore structure reliability 2.6. FPSO integrity References Chapter 3: Inspection techniques 3.1. Introduction 3.2. Offshore structures 3.2.1. Flooded member inspection 3.2.2. Magnetic particle test 3.2.3. The inspection report 3.2.4. Topside inspection 3.2.5. Offshore structure inspection plan based on ISO 3.3. Piping and pipeline inspection 3.4. Inspection methods 3.5. Tank inspections 3.5.1. Settlement survey 3.6. Onshore structures 3.6.1. Steel structures 3.6.2. Concrete structures 3.6.2.1. Concrete strength NDT Core test Rebound (Schmidt) Hammer test Ultrasonic test 3.6.3. General test methods comparison 3.6.3.1. Steel in concrete corrosion measurement test Chloride content penetration Concrete cover measurements Carbonation depth measurement Chlorides test Half-cell References Chapter 4: Assessment of structures and pipelines 4.1. Introduction 4.2. Assessment for onshore concrete structures 4.3. Concrete structure probability of failure 4.3.1. Concrete strength with age 4.3.1.1. Concrete strength with age in different codes 4.3.1.2. Variation in concrete strength 4.3.2. Variability of the concrete strength in a member 4.3.3. Corrosion of steel and concrete deterioration 4.3.4. Statistical data for corrosion rates 4.3.5. Capacity loss in reinforced concrete member 4.3.6. Effect of age and steel ratio 4.3.7. Start time of corrosion 4.3.8. Column eccentricity effect on reliability 4.4. Design and maintenance recommendations 4.5. Pipeline assessment 4.6. Storage tank assessment 4.7. Assessment for onshore steel structure 4.8. Assessment of offshore structure 4.8.1. Non-linear structure analysis in ultimate strength design 4.8.1.1. General purpose non-linear beam column models 4.8.1.2. Plastic hinge beam column models 4.8.1.3. Phenomenological models 4.8.1.4. Shell FE models 4.8.1.5. Modeling the element 4.8.1.6. Conductor connectivity 4.8.2. Structural modeling 4.8.2.1. Secondary framework 4.8.2.2. Dented beam and cracked joint 4.8.3. Determine probability of structural failure 4.8.4. Establish acceptance criteria 4.8.4.1. Topside assessment 4.9. Assessment for FPSO References Further reading Chapter 5: Repair methods for offshore and onshore structures 5.1. Offshore structures repair 5.1.1. Jacket repair 5.1.2. Dry welding 5.1.3. Dry welding on topsides 5.1.4. Dry welding at or below sea surface 5.1.5. Hyperbaric welding 5.1.6. Platform underwater repair 5.1.7. Platform ``shear pups´´ repair 5.1.8. Underwater repair for platform structure 5.1.9. Case study 2: Platform underwater repair 5.1.10. Clamps 5.1.11. Stressed mechanical clamps 5.1.12. Unstressed grouted clamp connections 5.1.13. Stressed grouted clamps 5.1.14. Stressed elastomer-lined clamp 5.1.15. Drilling platform stabilization post-hurricane Lili 5.1.16. Grouting 5.1.16.1. Joint grouting 5.1.16.2. Grout filling of members 5.1.16.3. Allowable axial force calculation 5.1.17. Composite technology 5.1.17.1. Reinforced epoxy grout 5.1.17.2. FRP composites 5.1.18. Example of using FRP 5.1.19. Case study for conductor composite repair 5.1.20. Fiberglass access decks 5.1.21. Fiberglass mudmats 5.2. FPSO repair 5.3. Pipeline repairs 5.4. Onshore structures 5.4.1. Main steps to execute repair 5.4.2. Structure strengthening 5.4.3. Demolish the delaminated concrete 5.4.4. Clean concrete surface and steel reinforcement 5.4.5. Bond new concrete with old concrete 5.4.6. Clean steel reinforcement bars 5.4.7. New concrete properties 5.4.8. Tank ring beam repair 5.4.9. Objective of strengthening concrete members 5.4.10. Slab on grade repair 5.4.11. Strengthening concrete by steel sections 5.4.12. Fiber reinforced polymer (FRP) 5.4.12.1. Carbon fiber reinforced polymer (CFRP) 5.4.12.2. Application on-site 5.4.12.3. General precautions References Further reading Chapter 6: Proactive approach to integrity 6.1. Introduction 6.2. Onshore structure protection 6.2.1. Corrosion inhibitor 6.2.2. Anodic inhibitors 6.2.3. Cathodic inhibitor 6.2.4. Coating of steel bars by epoxy 6.2.5. Galvanized steel bars 6.2.6. Stainless steel 6.2.7. Fiber reinforcement bars 6.2.8. Protecting the concrete surface 6.2.8.1. Sealers and membranes Coating and sealers Pore lining Pore blocking 6.2.9. Cathodic protection system 6.2.9.1. CP components and design considerations Source of impressed current Anodes for columns, beam, and foundations Conductive layer 6.2.10. Comparison between cathodic protection and others 6.3. Offshore structure protection 6.3.1. Geometric shape 6.4. Steel structure coatings and corrosion protection 6.5. Corrosion stresses due to the atmosphere, water, and soil 6.5.1. Classification of environments 6.5.1.1. Categories for water and soil 6.5.2. Mechanical, temperature, and combined stresses 6.6. General CP design considerations 6.6.1. Environmental parameters affecting CP 6.6.2. Design criteria 6.6.3. Protective potentials 6.6.4. Detrimental effects of CP 6.6.5. Galvanic anode materials 6.6.6. CP design parameters 6.6.6.1. Design life 6.6.6.2. Design current densities 6.6.6.3. Coating breakdown factors for CP design 6.6.6.4. Galvanic anode material design parameters 6.6.6.5. Anode resistance formulas 6.6.6.6. Seawater and sediment resistivity 6.6.6.7. Anode utilization factor 6.6.6.8. Current drain design parameters 6.6.7. CP calculation and design procedures 6.6.7.1. Current demand calculations 6.6.7.2. Selection of anode type 6.6.7.3. Anode mass calculations 6.6.7.4. Calculation of anodes number 6.6.7.5. Calculation of anode resistance 6.6.7.6. Anode design precaution 6.6.7.7. Distribution of anodes 6.7. Design example 6.8. General design considerations 6.9. Anode manufacture 6.10. Installation of anodes 6.11. Anode dimension tolerance 6.11.1. Internal and external inspection 6.11.1.1. FPSO protection 6.11.1.2. Pipelines and tanks Pipeline internal coating 6.11.1.3. External coatings Storage tank protection References Further reading Chapter 7: Integrity management system 7.1. Introduction 7.2. Offshore structure integrity management (SIM) system 7.2.1. Structure integrity management (SIM) 7.2.2. Qualitative risk assessment for platforms 7.2.3. Likelihood of failure factors 7.2.3.1. Likelihood of failure calculation Strength factors Design codes Number of legs and bracing system Piles system Risers and conductors Boat landings Grouted piles Damaged, missing, and cut members Splash zone corrosion and damage Flooded members Cathodic protection and anode depletion Inspection history Remaining wall thickness Loads factors Design loading Marine growth Scour Topside load change Risers, caissons, and conductors factor Wave in platform deck Seismic load 7.2.3.2. Likelihood categories 7.2.4. Impact or consequence factors 7.2.4.1. Environmental impact losses 7.2.4.2. Impact on business losses 7.2.4.3. Safety impact loss 7.2.4.4. Consequence categories 7.2.5. Overall risk ranking 7.3. Risk assessment outcomes 7.3.1. Cathodic protection 7.3.2. FPSO risk-based inspection 7.3.3. Strategy of inspection and repair 7.3.3.1. Expected Total cost 7.3.3.2. Optimization strategy 7.3.3.3. Onshore facilities and structure integrity References Further reading Index Back Cover