ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Aspen Plus: Chemical Engineering Applications, 2nd Edition

دانلود کتاب Aspen Plus: Chemical Engineering Applications, 2nd Edition

Aspen Plus: Chemical Engineering Applications, 2nd Edition

مشخصات کتاب

Aspen Plus: Chemical Engineering Applications, 2nd Edition

ویرایش: [2 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9781119868712 
ناشر: Wiley 
سال نشر: 2022 
تعداد صفحات: 1090 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 214 Mb 

قیمت کتاب (تومان) : 45,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Aspen Plus: Chemical Engineering Applications, 2nd Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب Aspen Plus: Chemical Engineering Applications, 2nd Edition نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

TITLE PAGE
COPYRIGHT PAGE
DEDICATION PAGE
PREFACE
THE BOOK THEME
ABOUT THE AUTHOR
WHAT DO YOU GET OUT OF THIS BOOK?
WHO SHOULD READ THIS BOOK?
NOTES FOR INSTRUCTORS
ACKNOWLEDGMENT
ABOUT THE COMPANION WEBSITE
1 INTRODUCING ASPEN PLUS®
	WHAT DOES ASPEN STAND FOR?
	WHAT IS ASPEN PLUS ® PROCESS SIMULATION MODEL?
	LAUNCHING ASPEN PLUS ® V12.1
	BEGINNING A SIMULATION
	ENTERING COMPONENTS
	SPECIFYING THE PROPERTY METHOD
	IMPROVEMENT OF THE PROPERTY METHOD ACCURACY
	FILE SAVING
	EXERCISE 1.1
	A GOOD FLOWSHEETING PRACTICE
	ASPEN PLUS ® BUILT‐IN HELP
	FOR MORE INFORMATION
	REFERENCE
2 MORE ON ASPEN PLUS ® FLOWSHEET FEATURES (1)
	PROBLEM DESCRIPTION
	ENTERING AND NAMING COMPOUNDS
	BINARY INTERACTIONS
	THE “SIMULATION” ENVIRONMENT: ACTIVATION DASHBOARD
	PLACING A BLOCK AND MATERIAL STREAM FROM MODEL PALETTE
	BLOCK AND STREAM MANIPULATION
	DATA INPUT, PROJECT TITLE, AND REPORT OPTIONS
	RUNNING THE SIMULATION
	THE DIFFERENCE AMONG RECOMMENDED PROPERTY METHODS
	NIST/TDE EXPERIMENTAL DATA
	ADDING MORE STREAM PROPERTIES
3 MORE ON ASPEN PLUS ® FLOWSHEET FEATURES (2)
	PROBLEM DESCRIPTION: CONTINUATION TO CHAPTER TWO
	THE CLEAN PARAMETERS STEP
	SIMULATION RESULTS CONVERGENCE
	ADDING STREAM TABLE
	PROPERTY SETS
	ADDING STREAM CONDITIONS
	PRINTING FROM ASPEN PLUS ®
	VIEWING THE INPUT SUMMARY
	REPORT GENERATION
	STREAM PROPERTIES
	ADDING A FLASH SEPARATION UNIT
	THE REQUIRED INPUT FOR “FLASH3”‐TYPE SEPARATOR
	RUNNING THE SIMULATION AND CHECKING THE RESULTS
4 FLASH SEPARATION AND DISTILLATION COLUMNS
	PROBLEM DESCRIPTION
	ADDING A SECOND MIXER AND FLASH
	DESIGN SPECIFICATIONS STUDY
	EXERCISE 4.1 (DESIGN SPEC)
	ASPEN PLUS ® DISTILLATION COLUMN OPTIONS
	“DSTWU” DISTILLATION COLUMN
	“DISTL” DISTILLATION COLUMN
	“RADFRAC” DISTILLATION COLUMN
	DESIGN AND SPECIFY COLUMN INTERNALS
5 LIQUID–LIQUID EXTRACTION PROCESS
	PROBLEM DESCRIPTION
	THE PROPER SELECTION FOR PROPERTY METHOD FOR EXTRACTION PROCESSES
	DEFINING NEW PROPERTY SETS
	THE PROPERTY METHOD VALIDATION VERSUS EXPERIMENTAL DATA USING SENSITIVITY ANALYSIS
	A MULTISTAGE EXTRACTION COLUMN
	THE TRIANGLE DIAGRAM
	REFERENCES
6 REACTORS WITH SIMPLE REACTION KINETIC FORMS
	PROBLEM DESCRIPTION
	DEFINING REACTION RATE CONSTANT TO ASPEN PLUS ® ENVIRONMENT
	ENTERING COMPONENTS AND METHOD OF PROPERTY
	THE RIGOROUS PLUG FLOW REACTOR (RPLUG)
	REACTOR AND REACTION SPECIFICATIONS FOR RPLUG (PFR)
	RUNNING THE SIMULATION (PFR ONLY)
	EXERCISE 6.1
	COMPRESSOR (CMPRSSR) AND RADFRAC RECTIFYING COLUMN (RECTIF)
	RUNNING THE SIMULATION (PFR + CMPRSSR + RECTIF)
	EXERCISE 6.2
	RADFRAC DISTILLATION COLUMN (DSTL)
	RUNNING THE SIMULATION (PFR + CMPRSSR + RECTIF + DSTL)
	REACTOR AND REACTION SPECIFICATIONS FOR RCSTR
	RUNNING THE SIMULATION (PFR + CMPRSSR + RECTIF + DSTL + RCSTR)
	EXERCISE 6.3
	SENSITIVITY ANALYSIS: THE REACTOR’S OPTIMUM OPERATING CONDITIONS
	REFERENCES
7 REACTORS WITH COMPLEX (NONCONVENTIONAL) REACTION KINETIC FORMS
	PROBLEM DESCRIPTION
	NONCONVENTIONAL KINETICS: LHHW TYPE REACTION
	GENERAL EXPRESSIONS FOR SPECIFYING LHHW‐TYPE REACTION IN ASPEN PLUS ®
	THE “DRIVING FORCE” FOR THE NONREVERSIBLE (IRREVERSIBLE) CASE
	THE “DRIVING FORCE” FOR THE REVERSIBLE CASE
	THE “ADSORPTION EXPRESSION”
	THE PROPERTY METHOD: “SRK”
	RPLUG FLOWSHEET FOR METHANOL PRODUCTION
	ENTERING INPUT PARAMETERS
	DEFINING METHANOL PRODUCTION REACTIONS AS LHHW TYPE
	SENSITIVITY ANALYSIS: EFFECT OF TEMPERATURE AND PRESSURE ON SELECTIVITY
	REFERENCES
8 PRESSURE DROP, FRICTION FACTOR, NPSHA, AND CAVITATION
	PROBLEM DESCRIPTION
	THE PROPERTY METHOD: “STEAMNBS”
	A WATER PUMPING FLOWSHEET
	ENTERING PIPE, PUMP, AND FITTINGS SPECIFICATIONS
	RESULTS: FRICTIONAL PRESSURE DROP, THE PUMP WORK, VALVE CHOKING, AND ANPSH VERSUS RNPSH
	EXERCISE 8.1
	MODEL ANALYSIS TOOLS: SENSITIVITY FOR THE ONSET OF CAVITATION OR VALVE CHOKING CONDITION
	REFERENCES
9 THE OPTIMIZATION TOOL
	PROBLEM DESCRIPTION: DEFINING THE OBJECTIVE FUNCTION
	THE PROPERTY METHOD: “STEAMNBS”
	A FLOWSHEET FOR WATER TRANSPORT
	ENTERING STREAM, PUMP, AND PIPE SPECIFICATIONS
	MODEL ANALYSIS TOOLS: THE OPTIMIZATION TOOL
	MODEL ANALYSIS TOOLS: THE SENSITIVITY TOOL
	LAST COMMENTS
	REFERENCES
10 HEAT EXCHANGER (H.E.) DESIGN
	PROBLEM DESCRIPTION
	TYPES OF HEAT EXCHANGER MODELS IN ASPEN PLUS ®
	THE SIMPLE HEAT EXCHANGER MODEL (“HEATER”)
	THE RIGOROUS HEAT EXCHANGER MODEL (“HEATX”)
	THE RIGOROUS EXCHANGER DESIGN AND RATING PROCEDURE
	GENERAL FOOTNOTES ON EDR EXCHANGER
	REFERENCES
11 ELECTROLYTES
	PROBLEM DESCRIPTION: WATER DE‐SOURING
	WHAT IS AN ELECTROLYTE?
	THE PROPERTY METHOD FOR ELECTROLYTES
	THE ELECTROLYTE WIZARD
	WATER DE‐SOURING PROCESS FLOWSHEET
	ENTERING THE SPECIFICATIONS OF FEED STREAMS AND THE STRIPPER
	THE SYMMETRIC REFERENCE STATE FOR IONIC COMPONENTS
	APPENDIX: DEVELOPMENT OF “ELECNRTL” MODEL
	REFERENCES
12 POLYMERIZATION PROCESSES
	THE THEORETICAL BACKGROUND
	CATALYST TYPES
	HIGH‐DENSITY POLYETHYLENE (HDPE) HIGH‐TEMPERATURE SOLUTION PROCESS
	CREATING ASPEN PLUS ® FLOWSHEET FOR HDPE
	IMPROVING CONVERGENCE
	PRESENTING THE PROPERTY DISTRIBUTION OF POLYMER
	REFERENCES
	APPENDIX A THE MAIN FEATURES AND ASSUMPTIONS OF ASPEN PLUS ® CHAIN POLYMERIZATION MODEL
	APPENDIX B THE NUMBER AVERAGE MOLECULAR WEIGHT (MWN) AND WEIGHT AVERAGE MOLECULAR WEIGHT (MWW)
13 CHARACTERIZATION OF DRUG‐LIKE MOLECULES AND THEIR SOLUBILITY
	INTRODUCTION
	PROBLEM DESCRIPTION
	CREATING ASPEN PLUS ® (AP) PHARMACEUTICAL TEMPLATE
	DEFINING MOLECULAR STRUCTURE OF BNZMD‐UD
	ENTERING PROPERTY DATA
	CONTRASTING AP DATABANK (BNZMD‐DB) VERSUS BNZMD‐UD
	SOLUBILITY OF DRUGS IN A HYBRID SOLVENT
	FINAL NOTES ON DRUG SOLUBILITY
	REFERENCES
14 SOLIDS HANDLING
	INTRODUCTION
	CREATING ASPEN PLUS ® FLOWSHEET
	CREATING ASPEN PLUS ® FLOWSHEET
	REFERENCES
	SOLIDS UNIT OPERATIONS
	SOLIDS CLASSIFICATION
	PREDEFINED STREAM CLASSIFICATION
	SUB-STREAM CLASSES
	PARTICLE SIZE DISTRIBUTION (PSD)
	FLUIDIZED BEDS
15 ASPEN PLUS ® DYNAMICS
	INTRODUCTION
	PROBLEM DESCRIPTION
	PREPARING ASPEN PLUS ® SIMULATION FOR ASPEN PLUS ® DYNAMICS (APD)
	CONVERSION OF ASPEN PLUS ® STEADY STATE INTO DYNAMIC SIMULATION
	MODES OF DYNAMIC CSTR HEAT TRANSFER
	CREATING THE PRESSURE‐DRIVEN DYNAMIC FILES FOR APD
	OPENING A DYNAMIC FILE USING APD
	THE “SIMULATION MESSAGES” WINDOW
	THE RUNNING MODE: INITIALIZATION
	ADDING TEMPERATURE CONTROL (TC)
	SNAPSHOTS MANAGEMENT FOR CAPTURED SUCCESSFUL OLD RUNS
	THE CONTROLLER FACEPLATE
	COMMUNICATION TIME FOR UPDATING/PRESENTING RESULTS
	THE CLOSED‐LOOP AUTO‐TUNE VARIATION (ATV) TEST VERSUS OPEN‐LOOP TUNE‐UP TEST
	THE OPEN‐LOOP (MANUAL MODE) TUNE‐UP FOR LIQUID‐LEVEL CONTROLLER
	THE CLOSED‐LOOP DYNAMIC RESPONSE FOR LIQUID‐LEVEL LOAD DISTURBANCE
	THE CLOSED‐LOOP DYNAMIC RESPONSE FOR LIQUID‐LEVEL SET‐POINT DISTURBANCE
	ACCOUNTING FOR DEAD/LAG TIME IN PROCESS DYNAMICS
	THE CLOSED‐LOOP (AUTO MODE) ATV TEST FOR TEMPERATURE CONTROLLER (TC)
	THE CLOSED‐LOOP DYNAMIC RESPONSE: “TC” RESPONSE TO TEMPERATURE LOAD DISTURBANCE
	INTERACTIONS BETWEEN “LC” AND “TC” CONTROL UNIT
	THE STABILITY OF A PROCESS WITHOUT CONTROL
	THE CASCADE CONTROL
	MONITORING OF VARIABLES AS FUNCTIONS OF TIME
	FINAL NOTES ON THE VIRTUAL (DRY) PROCESS CONTROL IN APD
	REFERENCES
16 SAFETY AND ENERGY ASPECTS OF CHEMICAL PROCESSES
	INTRODUCTION
	PROBLEM DESCRIPTION
	ADDING A PRESSURE SAFETY VALVE (PSV)
	ADDING A RUPTURE DISK (RD)
	PRESSURE RELIEF
	PREPARATION OF FLOWSHEET FOR “ENERGY ANALYSIS” ENVIRONMENT
	THE “ENERGY ANALYSIS” ACTIVATION
	ASPEN ENERGY ANALYZER
17 ASPEN PROCESS ECONOMIC ANALYZER (APEA)
	OPTIMIZED PROCESS FLOWSHEET FOR ACETIC ANHYDRIDE PRODUCTION
	COSTING OPTIONS IN ASPEN PLUS®
	ASPEN PROCESS ECONOMIC ANALYZER (APEA) ESTIMATION TEMPLATE
	FEED AND PRODUCT STREAM PRICES
	THE FIRST ROUTE FOR CHEMICAL PROCESS COSTING
	THE SECOND ROUND FOR CHEMICAL PROCESS COSTING
	APPENDIX
18 TERM PROJECTS (TP) WITH ADVANCED AP FEATURES
	A GENERAL NOTE ON OIL‐WATER SYSTEMS
	TP #1: PRODUCTION OF ACETONE VIA THE DEHYDRATION OF ISOPROPANOL
	TP #2: PRODUCTION OF FORMALDEHYDE FROM METHANOL (SENSITIVITY ANALYSIS)
	TP #3: PRODUCTION OF DIMETHYL ETHER (PROCESS ECONOMICS AND CONTROL)
	PROCESS DYNAMICS AND CONTROL
	TP #4: PRODUCTION OF ACETIC ACID VIA PARTIAL OXIDATION OF ETHYLENE GAS
	TP #5: PYROLYSIS OF BENZENE
	TP #6: REUSE OF SPENT SOLVENTS
	TP #7: SOLIDS HANDLING: PRODUCTION OF POTASSIUM SULFATE FROM SODIUM SULFATE
	TP #8: SOLIDS HANDLING: PRODUCTION OF CACO 3 ‐BASED AGGLOMERATE AS A GENERAL ADDITIVE
	TP #9: SOLIDS HANDLING: FORMULATION OF DIAMMONIUM PHOSPHATE AND POTASSIUM NITRATE BLEND FERTILIZER
	TP #10: “FLOWSHEETING OPTIONS” | “CALCULATOR”: GAS DE‐SOURING AND SWEETENING PROCESS
	TP #11: USING MORE THAN ONE PROPERTY METHOD AND STREAM CLASS: SOLID‐CATALYZED DIRECT HYDRATION OF PROPYLENE TO ISOPROPYL ALCOHOL (IPA)
	TP #12: POLYMERIZATION: PRODUCTION OF POLYVINYL ACETATE (PVAC)
	TP #13: POLYMERIZATION: EMULSION COPOLYMERIZATION OF STYRENE AND BUTADIENE TO PRODUCE SBR
	TP #14: POLYMERIZATION: FREE RADICAL POLYMERIZATION OF METHYL METHACRYLATE TO PRODUCE POLY (METHYL METHACRYLATE)
	TP #15: LHHW KINETICS: PRODUCTION OF CYCLOHEXANONE‐OXIME (CYCHXOXM) VIA CYCLOHEXANONE AMMOXIMATION USING CLAY‐BASED TITANIUM SILICALITE (TS) CATALYST
	TP #16: ACRYLIC ACID PRODUCTION FROM PROPYLENE OXIDATION
	TP #17: AMMONIA PRODUCTION AT RELATIVELY LOW PRESSURE AND TEMPERATURE
	TP #18: ACROLEIN PRODUCTION FROM PROPYLENE OXIDATION
19 ASPEN CUSTOM MODELER (ACM)
	INTRODUCTION
	SETUP PROPERTIES
	STARTING ACM
	ACM TERMINOLOGY
	MODEL CREATION
	CREATION OF VARIABLES AND EQUATIONS
	COMPILE AND TEST THE MODEL
	BUILDING A FLOWSHEET
	OPEN SYSTEM: ADD THE COMPONENT MOLE BALANCE
	ADD THE ENERGY BALANCE
	ADD PORTS
	MIXING RULE FOR PORTS/STREAMS
	HANDLING SIMULATION DIVERGENCE PROBLEMS
	RUNNING ACM MODELS UNDER ASPEN PLUS® (AP) PLATFORM
	MASS TRANSFER‐CONTROLLED EVAPORATION RATE
	PROCESS DYNAMICS MODEL
	ADDING A PLOT FORM
	SCRIPTS AND TASKS
	OPTIMIZATION
	DYNAMIC/STEADY ESTIMATION
	REFERENCES
INDEX
END USER LICENSE AGREEMENT




نظرات کاربران