دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Gang Wei (editor). Sangamesh G. Kum bar (editor)
سری: Woodhead Publishing Series in Biomaterials
ISBN (شابک) : 0081028504, 9780081028506
ناشر: Woodhead Publishing
سال نشر: 2020
تعداد صفحات: 480
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Artificial Protein and Peptide Nanofibers: Design, Fabrication, Characterization, and Applications (Woodhead Publishing Series in Biomaterials) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانوالیاف پروتئین و پپتید مصنوعی: طراحی، ساخت، خصوصیات و کاربردها (مجموعه انتشارات Woodhead در بیومواد) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نانوالیاف پروتئین و پپتیدی مصنوعی: طراحی، ساخت، خصوصیات و کاربردها دانش جامعی در مورد تهیه، اصلاح و کاربردهای نانوالیاف پروتئینی و پپتیدی ارائه می دهد. این کتاب سنتز و استراتژیهای لازم برای ایجاد پروتئین و نانوالیاف پپتیدی، مانند خودآرایی (از جمله مونتاژ فوق مولکولی)، الکتروریسی، سنتز قالب و سنتز آنزیمی را بررسی میکند. سپس، اصلاحات شیمیایی کلیدی و روشهای طراحی مولکولی برجسته میشوند که میتوانند برای بهبود عملکردهای زیستی این الیاف مصنوعی مورد استفاده قرار گیرند. در نهایت، روشهای ساخت برای کاربردهای کلیدی، مانند سنجش، تحویل دارو، تصویربرداری، مهندسی بافت و دستگاههای الکترونیکی بررسی میشوند.
این کتاب یک منبع ایده آل برای کسانی خواهد بود که در علم مواد، علم پلیمر، مهندسی شیمی، نانوتکنولوژی و زیست پزشکی کار می کنند.
Artificial Protein and Peptide Nanofibers: Design, Fabrication, Characterization, and Applications provides comprehensive knowledge of the preparation, modification and applications of protein and peptide nanofibers. The book reviews the synthesis and strategies necessary to create protein and peptide nanofibers, such as self-assembly (including supramolecular assembly), electrospinning, template synthesis, and enzymatic synthesis. Then, the key chemical modification and molecular design methods are highlighted that can be utilized to improve the bio-functions of these synthetic fibers. Finally, fabrication methods for key applications, such as sensing, drug delivery, imaging, tissue engineering and electronic devices are reviewed.
This book will be an ideal resource for those working in materials science, polymer science, chemical engineering, nanotechnology and biomedicine.
Cover Artificial Protein and Peptide Nanofibers: Design, Fabrication, Characterization, and Applications Copyright Dedication Contributors Foreword Section A: Fabrication and characterizations of artificial protein and peptide nanofibers Supramolecular self-assembly: A facile way to fabricate protein and peptide nanomaterials Introduction Protein and peptide assembly mechanism Protein self-assembly Peptide self-assembly Application of protein and peptide nanomaterials Drug delivery, tumor therapy, and tissue engineering Biomimetic light-harvesting nanomaterials Semiconductive materials Conclusions Acknowledgment References Self-assembly formation of peptide and protein nanofibers on surfaces and at interfaces Introduction Self-assembly formation of peptide/protein nanofibers on material surface Formation of nanofibers on inorganic material surface Peptide nanofibers Protein nanofibers Formation of nanofibers on organic/biological material surfaces Self-assembly formation of peptide and protein nanofibers at interfaces Formation of nanofibers at solid-liquid interfaces Formation of nanofibers at air-liquid interfaces Formation of nanofibers at liquid-liquid interfaces Conclusions and outlooks Acknowledgments References Fabrication of amyloid nanofiber matrices by electrospinning Introduction Electrospinning Basic technique Principle Parameter optimization Primary factors affecting fiber morphology Concentration Electrical conductivity Secondary factors affecting fiber morphology Voltage Feed rate Micro- and nanofibers Microfibers Nanofibers Electrospinning proteins Silk Collagen Albumin Other proteins Conclusion References Novel protein and peptide nanofibrous structures via supramolecular co-assembly Introduction Co-assembled peptide superstructures Co-assembly of short peptides Co-assembly of amphiphilic peptides Co-assembly of peptides based on protein motifs Co-assembled peptide-protein superstructures Co-assembled protein superstructures Electrospinning of co-assembled protein superstructures Extrusion of co-assembled protein superstructures Self-assembly of co-assembled protein superstructures Conclusion References Characterization techniques of protein and peptide nanofibers: Self-assembly kinetics Introduction Kinetic triggering for molecular self-assembly Characterizations of self-assembly kinetics of nanofibers/nanofibrils Spectroscopy analysis Microscopy analysis X-ray crystallography analysis Other analytical assays Summary Conclusion and outlooks References Section B: Enhanced functions of nanofibers by sequence design and modification Protein synthesis and characterization Introduction Types of proteins Protein structure Primary structure Secondary structure Tertiary structure Quaternary structure Applications of protein in medicine Bioactive/functional peptides Protein synthesis Protein biosynthesis Transcription Translation Initiation Elongation Termination Protein folding Chemical synthesis Solution phase peptide synthesis Solid-phase peptide synthesis (SPSS) Protecting agents N-terminal protecting groups C-terminal protecting group Side chain protecting groups Scavengers Amino acid coupling Peptide cleavage Enzymatic synthesis Effect of temperature Effect of molar ratio Solvents Biocatalyst engineering Synthesis by recombinant DNA technology Preparation of rDNA Transformation Nonbacterial transformation Phage introduction Working of rDNA Characterization of peptides and proteins Purity analysis Electrophoresis Polyacrylamide gel electrophoresis (PAGE) Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) Capillary electrophoresis (CE) Capillary zone electrophoresis (CZE) Isoelectric focussing capillary electrophoresis Micellar electrokinetic capillary chromatography (MECC) Assay and purification Reversed-phase chromatography (RPC) of proteins Principle Method Ion exchange chromatography Structural characterization of proteins/peptides Circular dichroism X-ray crystallography Nuclear magnetic resonance spectroscopy Multidimensional NMR Mass spectrophotometry Ionization MALDI ionization Electrospray ionization (ESI) Conclusions References Further reading Design of functional peptide nanofibers based on amyloid motifs Introduction Formation mechanism and secondary structures of functional amyloid nanofibers β-Sheet-based self-assembled amyloid nanofibers α-Helix-based self-assembled nanofibers Bio-applications of function-tailored amyloid nanofibers Peptide nanofibers for biomineralization Peptide nanofibers for tissue regeneration Peptide nanofibers for drug delivery Peptide nanofibers’ other biofunctions Conclusions and outlooks Acknowledgments References Design of amphiphilic peptide nanofibers Introduction Amphiphilic peptide design Self-assembled peptide nanofibers Characterization methods for self-assembling amphiphilic peptides Conclusions References Nanofiber matrices of protein mimetic bioactive peptides for biomedical applications Introduction Protein mimetic bioactive peptide nanofibers Biomedical applications of protein mimetic bioactive peptide nanofibers Nanocarrier for drug delivery Bioactive coatings Antimicrobial property Tissue regeneration Stem cell proliferation Vascular regeneration Neural regeneration Antiangiogenic activity Skin regeneration Cartilage regeneration Bone regeneration Bio-imaging Bio-sensing Conclusion and future prospects References Synergetic integration of computer-aided design, experimental synthesis, and self-assembly for the rational design of pept ... Introduction Simulation techniques for peptide/protein designs Peptide-specific simulation techniques Molecular dynamics simulation techniques Simulation strategies for peptide/protein sequence designs De novo design Multiscale modeling-aided peptide/protein design Experimental methods for artificial peptide/protein synthesis Chemical synthesis Solution-phase synthesis Solid-phase synthesis Synthetic biology techniques Fibrillation of artificial peptide/proteins Conclusions Acknowledgments References Composite nanofiber matrices for biomedical applications Introduction Protein-based nanofiber composites and their interactions Protein-polymer composite Protein-metal ion composites Protein-nanoparticles composites Protein‑carbon materials composites Protein-small molecules composites Protein-hydrogel nanofiber composites Biomedical applications of composite nanofibers Tissue engineering Drug delivery Sensors Bioimaging Conclusion/future perspective References Further reading Nanofiber-based hydrogels and aerogels NFHGs are of great significance for in vitro culture of spheroid tumor models Application in nerve repair Application in drug delivery Application in healing the wound Application in separating oil/organic liquid and water Acknowledgments References Section C: Related applications of artificial protein and peptide nanofibers Protein and peptide nanostructures for drug and gene delivery Introduction Albumin nanoparticles Collagen nanoparticles Gelatin nanoparticles Elastin nanoparticles Fibroin nanoparticles Sericin nanoparticles Keratin nanoparticles Zein nanoparticles Gliadin nanoparticles Casein nanoparticles Beta lactoglobulin nanoparticles Lactoferrin nanoparticles Legume protein nanoparticles Soy protein-based nanoparticles Lysozyme nanoparticles Protein-modified nanoparticles Role of cell penetrating peptides in drug and gene delivery Self-assembled peptide structures Emerging applications for protein and peptide-based delivery systems Peptide-drug conjugates Electrospun drug delivery systems Concluding remarks Acknowledgment References Protein and peptide nanofiber matrices for the regenerative medicine Proteins and peptides in tissue engineering and regenerative medicine Fundamentals of proteins and peptides structures Interaction of protein with substrate and role in the cell-materials interaction Biofunctionalization of nanofiber-based scaffolds with proteins Self-assembling peptides and proteins in bioengineering Types and structures α -Helical peptide nanofibers β -Sheet peptide nanofibers Collagen-mimetic peptides β -Hairpin-like peptide nanofibers Supramolecular self-assembly of peptides Design of various structural motifs Self-assembling peptide in peptide-based hydrogels Self-assembling proteins Surface modification with peptides-based nanofibers for the tissue engineering applications Bone tissue regeneration Cartilage tissue repairs Cardiovascular tissue regeneration Nerve tissue regeneration Naturally occurring and engineered proteins for the tissue regeneration applications Summary Acknowledgment References Fibrous scaffolds for bone tissue engineering Introduction Bone cells and their microenvironment Design considerations for fibrous scaffolds for bone tissue engineering Degradation Mechanical properties Fiber orientation Surface chemistry and osteoinductive properties Methods for fibrous scaffold processing Centrifugal spinning Wet spinning Fiber knitting Electrospinning Self-assembly Fiber reinforced scaffolds Current findings in bone tissue engineering using nano- and micro-fibers Synthetic polymers and polymer composites Natural polymers Conclusion and future trends using fibrous scaffold approaches References Assembled peptides for biomimetic catalysis Introduction Enzyme models constructed by peptide assembly Oxidoreductase mimics Metal ion coordination Ferriporphyrin complexes Nanozyme incorporation Hydrolase mimics Histidine as the catalytic group Glutamic acid/aspartic acid acts as the catalytic group Metal ion coordination Aldolase mimics Key issues for constructing peptide assembly enzyme mimics Peptide assembly versus protein folding Structure design: α-helix or β-sheet? Catalytic groups in the active site Catalytic microenvironment Specificity versus diversity Switchable activity based on a reversible supramolecular structure Applications in the environment and healthcare Perspective Acknowledgment References New protein-based smart materials Introduction Smart materials based on protein/hybrid self-assembly “Smart” hydrogel biomaterials Smart protocell models based on assembly of protein/protein-polymer materials Biosensors based on protein assembly Outlook and perspective Acknowledgments References Nanofibers for soft-tissue engineering Introduction Soft-tissue injuries Soft-tissue engineering Scaffold matrices Cell sources Soft-tissue engineering using nanofiber matrices Nanofiber matrices fabrication Self-assembly Phase separation Electrospinning Type of materials used in nanofiber matrices fabrication Natural nanofiber matrices Synthetic nanofiber matrices Blended nanofiber matrices Bioactive nanofiber matrices Physical incorporation Chemical tethering Nanofiber matrices for protein and growth factor delivery Application of nanofiber matrices in soft-tissue engineering Skin Tendon and ligament Nerve Muscles Conclusion Acknowledgment References Index A B C D E F G H I K L M N O P Q R S T V W X Z Back Cover