ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Artificial Protein and Peptide Nanofibers: Design, Fabrication, Characterization, and Applications (Woodhead Publishing Series in Biomaterials)

دانلود کتاب نانوالیاف پروتئین و پپتید مصنوعی: طراحی، ساخت، خصوصیات و کاربردها (مجموعه انتشارات Woodhead در بیومواد)

Artificial Protein and Peptide Nanofibers: Design, Fabrication, Characterization, and Applications (Woodhead Publishing Series in Biomaterials)

مشخصات کتاب

Artificial Protein and Peptide Nanofibers: Design, Fabrication, Characterization, and Applications (Woodhead Publishing Series in Biomaterials)

ویرایش: 1 
نویسندگان:   
سری: Woodhead Publishing Series in Biomaterials 
ISBN (شابک) : 0081028504, 9780081028506 
ناشر: Woodhead Publishing 
سال نشر: 2020 
تعداد صفحات: 480 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 13 مگابایت 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Artificial Protein and Peptide Nanofibers: Design, Fabrication, Characterization, and Applications (Woodhead Publishing Series in Biomaterials) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانوالیاف پروتئین و پپتید مصنوعی: طراحی، ساخت، خصوصیات و کاربردها (مجموعه انتشارات Woodhead در بیومواد) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نانوالیاف پروتئین و پپتید مصنوعی: طراحی، ساخت، خصوصیات و کاربردها (مجموعه انتشارات Woodhead در بیومواد)



نانوالیاف پروتئین و پپتیدی مصنوعی: طراحی، ساخت، خصوصیات و کاربردها دانش جامعی در مورد تهیه، اصلاح و کاربردهای نانوالیاف پروتئینی و پپتیدی ارائه می دهد. این کتاب سنتز و استراتژی‌های لازم برای ایجاد پروتئین و نانوالیاف پپتیدی، مانند خودآرایی (از جمله مونتاژ فوق مولکولی)، الکتروریسی، سنتز قالب و سنتز آنزیمی را بررسی می‌کند. سپس، اصلاحات شیمیایی کلیدی و روش‌های طراحی مولکولی برجسته می‌شوند که می‌توانند برای بهبود عملکردهای زیستی این الیاف مصنوعی مورد استفاده قرار گیرند. در نهایت، روش‌های ساخت برای کاربردهای کلیدی، مانند سنجش، تحویل دارو، تصویربرداری، مهندسی بافت و دستگاه‌های الکترونیکی بررسی می‌شوند.

این کتاب یک منبع ایده آل برای کسانی خواهد بود که در علم مواد، علم پلیمر، مهندسی شیمی، نانوتکنولوژی و زیست پزشکی کار می کنند.


توضیحاتی درمورد کتاب به خارجی

Artificial Protein and Peptide Nanofibers: Design, Fabrication, Characterization, and Applications provides comprehensive knowledge of the preparation, modification and applications of protein and peptide nanofibers. The book reviews the synthesis and strategies necessary to create protein and peptide nanofibers, such as self-assembly (including supramolecular assembly), electrospinning, template synthesis, and enzymatic synthesis. Then, the key chemical modification and molecular design methods are highlighted that can be utilized to improve the bio-functions of these synthetic fibers. Finally, fabrication methods for key applications, such as sensing, drug delivery, imaging, tissue engineering and electronic devices are reviewed.

This book will be an ideal resource for those working in materials science, polymer science, chemical engineering, nanotechnology and biomedicine.



فهرست مطالب

Cover
Artificial Protein and
Peptide Nanofibers:
Design, Fabrication, Characterization,
and Applications
Copyright
Dedication
Contributors
Foreword
Section A: Fabrication and characterizations of artificial protein and peptide nanofibers
Supramolecular self-assembly: A facile way to fabricate protein and peptide nanomaterials
	Introduction
	Protein and peptide assembly mechanism
		Protein self-assembly
		Peptide self-assembly
	Application of protein and peptide nanomaterials
		Drug delivery, tumor therapy, and tissue engineering
		Biomimetic light-harvesting nanomaterials
		Semiconductive materials
	Conclusions
	Acknowledgment
	References
Self-assembly formation of peptide and protein nanofibers on surfaces and at interfaces
	Introduction
	Self-assembly formation of peptide/protein nanofibers on material surface
		Formation of nanofibers on inorganic material surface
			Peptide nanofibers
			Protein nanofibers
		Formation of nanofibers on organic/biological material surfaces
	Self-assembly formation of peptide and protein nanofibers at interfaces
		Formation of nanofibers at solid-liquid interfaces
		Formation of nanofibers at air-liquid interfaces
		Formation of nanofibers at liquid-liquid interfaces
	Conclusions and outlooks
	Acknowledgments
	References
Fabrication of amyloid nanofiber matrices by electrospinning
	Introduction
	Electrospinning
		Basic technique
		Principle
		Parameter optimization
			Primary factors affecting fiber morphology
				Concentration
				Electrical conductivity
			Secondary factors affecting fiber morphology
				Voltage
				Feed rate
		Micro- and nanofibers
			Microfibers
			Nanofibers
	Electrospinning proteins
		Silk
		Collagen
		Albumin
		Other proteins
	Conclusion
	References
Novel protein and peptide nanofibrous structures via supramolecular co-assembly
	Introduction
	Co-assembled peptide superstructures
		Co-assembly of short peptides
		Co-assembly of amphiphilic peptides
		Co-assembly of peptides based on protein motifs
		Co-assembled peptide-protein superstructures
	Co-assembled protein superstructures
		Electrospinning of co-assembled protein superstructures
		Extrusion of co-assembled protein superstructures
		Self-assembly of co-assembled protein superstructures
	Conclusion
	References
Characterization techniques of protein and peptide nanofibers: Self-assembly kinetics
	Introduction
	Kinetic triggering for molecular self-assembly
	Characterizations of self-assembly kinetics of nanofibers/nanofibrils
		Spectroscopy analysis
		Microscopy analysis
		X-ray crystallography analysis
		Other analytical assays
	Summary
	Conclusion and outlooks
	References
Section B: Enhanced functions of nanofibers by sequence design and modification
Protein synthesis and characterization
	Introduction
	Types of proteins
	Protein structure
		Primary structure
		Secondary structure
		Tertiary structure
		Quaternary structure
	Applications of protein in medicine
	Bioactive/functional peptides
	Protein synthesis
		Protein biosynthesis
			Transcription
			Translation
				Initiation
				Elongation
				Termination
			Protein folding
		Chemical synthesis
			Solution phase peptide synthesis
			Solid-phase peptide synthesis (SPSS)
				Protecting agents
					N-terminal protecting groups
					C-terminal protecting group
					Side chain protecting groups
				Scavengers
				Amino acid coupling
				Peptide cleavage
		Enzymatic synthesis
			Effect of temperature
			Effect of molar ratio
			Solvents
			Biocatalyst engineering
		Synthesis by recombinant DNA technology
			Preparation of rDNA
				Transformation
				Nonbacterial transformation
				Phage introduction
			Working of rDNA
	Characterization of peptides and proteins
		Purity analysis
			Electrophoresis
				Polyacrylamide gel electrophoresis (PAGE)
				Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
				Capillary electrophoresis (CE)
					Capillary zone electrophoresis (CZE)
					Isoelectric focussing capillary electrophoresis
					Micellar electrokinetic capillary chromatography (MECC)
		Assay and purification
			Reversed-phase chromatography (RPC) of proteins
				Principle
				Method
			Ion exchange chromatography
		Structural characterization of proteins/peptides
			Circular dichroism
			X-ray crystallography
			Nuclear magnetic resonance spectroscopy
				Multidimensional NMR
			Mass spectrophotometry
				Ionization
					MALDI ionization
					Electrospray ionization (ESI)
	Conclusions
	References
	Further reading
Design of functional peptide nanofibers based on amyloid motifs
	Introduction
	Formation mechanism and secondary structures of functional amyloid nanofibers
		β-Sheet-based self-assembled amyloid nanofibers
		α-Helix-based self-assembled nanofibers
	Bio-applications of function-tailored amyloid nanofibers
		Peptide nanofibers for biomineralization
		Peptide nanofibers for tissue regeneration
		Peptide nanofibers for drug delivery
		Peptide nanofibers’ other biofunctions
	Conclusions and outlooks
	Acknowledgments
	References
Design of amphiphilic peptide nanofibers
	Introduction
	Amphiphilic peptide design
	Self-assembled peptide nanofibers
	Characterization methods for self-assembling amphiphilic peptides
	Conclusions
	References
Nanofiber matrices of protein mimetic bioactive peptides for biomedical applications
	Introduction
	Protein mimetic bioactive peptide nanofibers
	Biomedical applications of protein mimetic bioactive peptide nanofibers
		Nanocarrier for drug delivery
		Bioactive coatings
		Antimicrobial property
		Tissue regeneration
			Stem cell proliferation
			Vascular regeneration
			Neural regeneration
			Antiangiogenic activity
			Skin regeneration
			Cartilage regeneration
			Bone regeneration
		Bio-imaging
		Bio-sensing
	Conclusion and future prospects
	References
Synergetic integration of computer-aided design, experimental synthesis, and self-assembly for the rational design of pept ...
	Introduction
	Simulation techniques for peptide/protein designs
		Peptide-specific simulation techniques
		Molecular dynamics simulation techniques
	Simulation strategies for peptide/protein sequence designs
		De novo design
		Multiscale modeling-aided peptide/protein design
	Experimental methods for artificial peptide/protein synthesis
		Chemical synthesis
			Solution-phase synthesis
			Solid-phase synthesis
		Synthetic biology techniques
	Fibrillation of artificial peptide/proteins
	Conclusions
	Acknowledgments
	References
Composite nanofiber matrices for biomedical applications
	Introduction
	Protein-based nanofiber composites and their interactions
	Protein-polymer composite
	Protein-metal ion composites
	Protein-nanoparticles composites
	Protein‑carbon materials composites
	Protein-small molecules composites
	Protein-hydrogel nanofiber composites
	Biomedical applications of composite nanofibers
		Tissue engineering
		Drug delivery
		Sensors
		Bioimaging
	Conclusion/future perspective
	References
	Further reading
Nanofiber-based hydrogels and aerogels
	NFHGs are of great significance for in vitro culture of spheroid tumor models
	Application in nerve repair
	Application in drug delivery
	Application in healing the wound
	Application in separating oil/organic liquid and water
	Acknowledgments
	References
Section C: Related applications of artificial protein and peptide nanofibers
Protein and peptide nanostructures for drug and gene delivery
	Introduction
	Albumin nanoparticles
	Collagen nanoparticles
	Gelatin nanoparticles
	Elastin nanoparticles
	Fibroin nanoparticles
	Sericin nanoparticles
	Keratin nanoparticles
	Zein nanoparticles
	Gliadin nanoparticles
	Casein nanoparticles
	Beta lactoglobulin nanoparticles
	Lactoferrin nanoparticles
	Legume protein nanoparticles
	Soy protein-based nanoparticles
	Lysozyme nanoparticles
	Protein-modified nanoparticles
	Role of cell penetrating peptides in drug and gene delivery
	Self-assembled peptide structures
	Emerging applications for protein and peptide-based delivery systems
	Peptide-drug conjugates
	Electrospun drug delivery systems
	Concluding remarks
	Acknowledgment
	References
Protein and peptide nanofiber matrices for the regenerative medicine
	Proteins and peptides in tissue engineering and regenerative medicine
	Fundamentals of proteins and peptides structures
	Interaction of protein with substrate and role in the cell-materials interaction
	Biofunctionalization of nanofiber-based scaffolds with proteins
	Self-assembling peptides and proteins in bioengineering
		Types and structures
			α -Helical peptide nanofibers
			β -Sheet peptide nanofibers
			Collagen-mimetic peptides
			β -Hairpin-like peptide nanofibers
		Supramolecular self-assembly of peptides
		Design of various structural motifs
		Self-assembling peptide in peptide-based hydrogels
		Self-assembling proteins
	Surface modification with peptides-based nanofibers for the tissue engineering applications
		Bone tissue regeneration
		Cartilage tissue repairs
		Cardiovascular tissue regeneration
		Nerve tissue regeneration
	Naturally occurring and engineered proteins for the tissue regeneration applications
	Summary
	Acknowledgment
	References
Fibrous scaffolds for bone tissue engineering
	Introduction
	Bone cells and their microenvironment
	Design considerations for fibrous scaffolds for bone tissue engineering
		Degradation
		Mechanical properties
		Fiber orientation
		Surface chemistry and osteoinductive properties
	Methods for fibrous scaffold processing
		Centrifugal spinning
		Wet spinning
		Fiber knitting
		Electrospinning
		Self-assembly
		Fiber reinforced scaffolds
	Current findings in bone tissue engineering using nano- and micro-fibers
		Synthetic polymers and polymer composites
		Natural polymers
	Conclusion and future trends using fibrous scaffold approaches
	References
Assembled peptides for biomimetic catalysis
	Introduction
	Enzyme models constructed by peptide assembly
		Oxidoreductase mimics
			Metal ion coordination
			Ferriporphyrin complexes
			Nanozyme incorporation
		Hydrolase mimics
			Histidine as the catalytic group
			Glutamic acid/aspartic acid acts as the catalytic group
			Metal ion coordination
		Aldolase mimics
	Key issues for constructing peptide assembly enzyme mimics
		Peptide assembly versus protein folding
		Structure design: α-helix or β-sheet?
		Catalytic groups in the active site
		Catalytic microenvironment
		Specificity versus diversity
		Switchable activity based on a reversible supramolecular structure
	Applications in the environment and healthcare
	Perspective
	Acknowledgment
	References
New protein-based smart materials
	Introduction
	Smart materials based on protein/hybrid self-assembly
		“Smart” hydrogel biomaterials
		Smart protocell models based on assembly of protein/protein-polymer materials
		Biosensors based on protein assembly
	Outlook and perspective
	Acknowledgments
	References
Nanofibers for soft-tissue engineering
	Introduction
	Soft-tissue injuries
	Soft-tissue engineering
		Scaffold matrices
		Cell sources
	Soft-tissue engineering using nanofiber matrices
		Nanofiber matrices fabrication
			Self-assembly
			Phase separation
			Electrospinning
		Type of materials used in nanofiber matrices fabrication
			Natural nanofiber matrices
			Synthetic nanofiber matrices
			Blended nanofiber matrices
	Bioactive nanofiber matrices
		Physical incorporation
		Chemical tethering
		Nanofiber matrices for protein and growth factor delivery
	Application of nanofiber matrices in soft-tissue engineering
		Skin
		Tendon and ligament
		Nerve
		Muscles
	Conclusion
	Acknowledgment
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X
	Z
Back Cover




نظرات کاربران