دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Igor Farkaš, Paolo Masulli, Sebastian Otte, Stefan Wermter سری: ISBN (شابک) : 3030863646, 9783030863647 ناشر: Springer سال نشر: 2021 تعداد صفحات: 697 [708] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 88 Mb
در صورت تبدیل فایل کتاب Artificial Neural Networks and Machine Learning – ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part III به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبکههای عصبی مصنوعی و یادگیری ماشین – ICANN 2021: سیامین کنفرانس بینالمللی شبکههای عصبی مصنوعی، براتیسلاوا، اسلواکی، 14 تا 17 سپتامبر 2021، مجموعه مقالات، بخش سوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مجموعه اقدامات LNCS 12891، LNCS 12892، LNCS 12893، LNCS 12894 و LNCS 12895، مجموعه مقالات سی امین کنفرانس بین المللی شبکه های عصبی مصنوعی، ICANN 2021، در براتیسلاوا، مقاله کامل 5، اسلواکی2، در سپتامبر 5*2، در مجموع مقالات اسلواکی2 برگزار شد. ارائه شده در این مجموعه به دقت بررسی و از بین 496 مقاله ارسالی انتخاب و در 5 جلد تنظیم شد. در این جلد، مقالات بر موضوعاتی مانند شبکههای عصبی مولد، شبکههای عصبی گراف، مدلهای سلسله مراتبی و مجموعهای، تخمین وضعیت انسانی، پردازش تصویر، تقسیمبندی تصویر، تقطیر دانش، و پردازش تصویر پزشکی تمرکز دارند. *کنفرانس در سال 2021 به دلیل همه گیری کووید-19 به صورت آنلاین برگزار شد.
The proceedings set LNCS 12891, LNCS 12892, LNCS 12893, LNCS 12894 and LNCS 12895 constitute the proceedings of the 30th International Conference on Artificial Neural Networks, ICANN 2021, held in Bratislava, Slovakia, in September 2021.* The total of 265 full papers presented in these proceedings was carefully reviewed and selected from 496 submissions, and organized in 5 volumes. In this volume, the papers focus on topics such as generative neural networks, graph neural networks, hierarchical and ensemble models, human pose estimation, image processing, image segmentation, knowledge distillation, and medical image processing. *The conference was held online 2021 due to the COVID-19 pandemic.
Preface Organization Contents – Part III Generative Neural Networks Binding and Perspective Taking as Inference in a Generative Neural Network Model 1 Introduction 2 Proposed Model 2.1 Sub-modal Population Encoding 2.2 Gestalt Perception and Feature Binding 2.3 Perspective Taking 3 Experimental Results 3.1 VAE Prediction Error 3.2 Adaptation of Feature Binding 3.3 Adaptation of Perspective Taking 4 Summary and Conclusion References Advances in Password Recovery Using Generative Deep Learning Techniques 1 Introduction and Motivation 2 Related Work 3 Models 4 Results 4.1 Data 4.2 Experimental Setup 4.3 Analysis of Generated Passwords 4.4 Password Guessing Performance 4.5 Comparison to Established Methods 4.6 Operations in Latent Space 5 Conclusion and Future Work References Dilated Residual Aggregation Network for Text-Guided Image Manipulation 1 Introduction 2 Related Work 3 Methodology 3.1 Overview of DRA 3.2 Encoder of DRA 3.3 Decoder of DRA 3.4 Objective Function of DRA 4 Experiments 4.1 Datasets 4.2 Baselines 4.3 Implementation Details 4.4 Results 4.5 Ablation Studies 4.6 Failure Examples 5 Conclusions References Denoising AutoEncoder Based Delete and Generate Approach for Text Style Transfer 1 Introduction 2 Related Work 3 Approach 3.1 Delete 3.2 Generate 4 Experiments 4.1 Datasets 4.2 Models for Comparisons 4.3 Evaluation Metrics 4.4 Experiment Details 4.5 Result Analysis 5 Conclusion References GUIS2Code: A Computer Vision Tool to Generate Code Automatically from Graphical User Interface Sketches 1 Introduction 2 Related Work 2.1 Object Detection and Text Recognition 2.2 GUI Code Generation 3 Approach Description 3.1 Overall Architecture 3.2 UI Component Detection 3.3 Text Recognition 3.4 Code Parser 4 Experimental Results and Analysis 4.1 Dataset and Experiment Setup 4.2 The Ablation Study and Evaluate 4.3 Comparison with Other Approaches 5 Conclusion References Generating Math Word Problems from Equations with Topic Consistency Maintaining and Commonsense Enforcement 1 Introduction 2 Task Definition 3 Model 3.1 Variational Encoder-Decoder Module 3.2 Enhancing Equation Encoder by Variational Autoencoder 3.3 Topic Selection and Controlling 3.4 Commonsense Enforcement 3.5 Training Objective 4 Experiments 4.1 Datasets 4.2 Motivation of Creating New Dataset 4.3 Model Settings 4.4 Automatic Evaluation 4.5 Human Evaluation 4.6 Case Study 5 Conclusion References Generative Properties of Universal Bidirectional Activation-Based Learning 1 Towards More Brain-Like Learning 2 UBAL Model 3 Classification and Generative Properties References Graph Neural Networks I Joint Graph Contextualized Network for Sequential Recommendation 1 Introduction 2 Methods 2.1 Graph Construction and Embedding 2.2 Current Interest Module 2.3 Global Preference Module 2.4 Prediction Layer and Model Training 3 Experimental Setup 4 Results and Analysis 5 Conclusion References Relevance-Aware Q-matrix Calibration for Knowledge Tracing 1 Introduction 2 Related Work 3 Preliminaries 4 Method 4.1 QKT 4.2 RAQC 4.3 RAQC for Knowledge Tracing 5 Experiments 5.1 Datasets 5.2 Experimental Setup 5.3 Experimental Results on Two Tasks 6 Conclusion References LGACN: A Light Graph Adaptive Convolution Network for Collaborative Filtering 1 Introduction 2 Related Work 2.1 Collaborative Filtering 2.2 Graph Convolution Network 3 Methodology 3.1 Embedding Layer 3.2 Adaptive Embedding Propagation Layers 3.3 Attention-Based Layer Combination and Model Prediction 4 Experiments 4.1 Datasets and Evaluation Metrics 4.2 Compared Methods 4.3 Parameter Settings 4.4 Performance Comparison(RQ1) 4.5 Performance Comparison with LightGCN(RQ2) 4.6 Hyper-parameter Studies and Ablation Experiments (RQ3 and RQ4) 5 Conclusion References HawkEye: Cross-Platform Malware Detection with Representation Learning on Graphs 1 Introduction 2 Related Work 3 Motivation 3.1 Cross-Platform Malware Detection 3.2 Representation Learning Based Feature Engineering 4 System Design 4.1 Architecture 4.2 Graph Generator 4.3 Feature Embedding 4.4 MLP-Based Malware Classifier 5 Evaluation 5.1 Dataset and Experimental Setup 5.2 Power Law and Opcode Embedding 5.3 Evaluation Tasks 5.4 Hyper-parameters Selection 5.5 Detection on Obfuscated Samples 6 Conclusion References An Empirical Study of the Expressiveness of Graph Kernels and Graph Neural Networks 1 Introduction 2 Related Work 3 Comparing Graphs to Each Other 4 Empirical Evaluation 4.1 Dataset 4.2 Selected Approaches 4.3 Baselines 4.4 Experimental Settings 4.5 Results 5 Conclusion References Multi-resolution Graph Neural Networks for PDE Approximation 1 Introduction 2 Related Works 2.1 Machine Learning for PDEs 2.2 Graph Neural Networks 3 Multi-grid Graph Neural Networks 3.1 Graph Convolutional Neural Networks 3.2 Multi-grid Approaches 4 Experimental Conditions 5 Experimental Results 5.1 Fixed Domains 5.2 Variable Domains 5.3 Computational Costs 6 Conclusion References Link Prediction on Knowledge Graph by Rotation Embedding on the Hyperplane in the Complex Vector Space 1 Introduction 2 Related Work 3 Background 3.1 RotatE 3.2 TransH 4 Proposed RotatH Model 5 Experiments 5.1 Datasets 5.2 Parameters 5.3 Metrics 5.4 Running Environment 5.5 Results 6 Conclusion References Graph Neural Networks II Contextualise Entities and Relations: An Interaction Method for Knowledge Graph Completion 1 Introduction 2 Related Works 3 Methodology 3.1 Interaction Mechanism 3.2 Interaction Embedding Decoders 4 Experiments 4.1 Benchmark Dataset 4.2 Evaluation Protocol 4.3 Main Results 4.4 Analysis and Discussion 5 Conclusion References Civil Unrest Event Forecasting Using Graphical and Sequential Neural Networks 1 Introduction 2 Related Work 2.1 Event Database 2.2 Civil Unrest Forecasting 2.3 Graph Convolutional Networks 3 Methodology 3.1 Construction of the Event Graph 3.2 Representation Learning 3.3 Prediction 4 Experiments 5 Results and Analysis 5.1 Results 5.2 The Influence of Lead Time 5.3 The Influence of External Events 6 Conclusions References Parameterized Hypercomplex Graph Neural Networks for Graph Classification 1 Introduction 2 Related Work 3 Hypercomplex Neural Networks 3.1 Parameterized Hypercomplex Layer 4 Hypercomplex Graph Neural Network 4.1 Initialization of Linear Independent Contributions 4.2 Hypercomplex Graph Neural Network 5 Experiments 6 Conclusion References Feature Interaction Based Graph Convolutional Networks for Image-Text Retrieval 1 Introduction 2 Related Work 3 Feature Interaction Based Graph Convolutional Networks for Image-Text Retrieval 3.1 Feature Interaction Based Fragment Affinity Representation 3.2 Relationship-Enhanced Fragment Feature Calculation 3.3 Fragment-Level Image-Text Alignment 3.4 Datasets and Evaluation Metric 4 Experiment 4.1 Implementation Details 4.2 Comparisons with the State-of-the-Art 4.3 Ablation Study 4.4 Visualization 5 Conclusion References Generalizing Message Passing Neural Networks to Heterophily Using Position Information 1 Introduction 2 Related Work 3 Problem 3.1 Indices of Heterophily 4 Approach 4.1 Anchor Selection 4.2 Position Encoder 4.3 Representation Updater 4.4 Complexity Analysis 5 Experiments 5.1 Datasets 5.2 Compared Methods 5.3 Experimental Setup 5.4 Experimental Results 5.5 Visualization 5.6 Time Cost Analysis 6 Conclusion References Local and Non-local Context Graph Convolutional Networks for Skeleton-Based Action Recognition 1 Introduction 2 Related Work 2.1 Skeleton Based Action Recognition 2.2 Embedding High-Level Information in Graphs 2.3 Modeling Long-Range Dependence 3 Method 3.1 Overview 3.2 Motion Enhanced Graph 3.3 Local and Non-local Context Module 3.4 Optimization Strategies 4 Experiment 4.1 Dataset 4.2 Implementation Details 4.3 Ablation Study 4.4 Comparison with the State-of-the-Art 5 Conclusion References STGATP: A Spatio-Temporal Graph Attention Network for Long-Term Traffic Prediction 1 Introduction 2 Prior Work 3 Methodology 3.1 Problem Definition 3.2 Framework 3.3 Temporal Convolutional Block 3.4 Spatial Convolutional Block 4 Experiments 4.1 Datasets 4.2 Experimental Settings 4.3 Experimental Results 4.4 Supplementary Experiment 5 Conclusions References Hierarchical and Ensemble Models Integrating N-Gram Features into Pre-trained Model: A Novel Ensemble Model for Multi-target Stance Detection 1 Introduction 2 Related Works 3 Model 3.1 PMINFM Layer 3.2 BiLSTM Layer 3.3 Output and Model Training 4 Experiment 4.1 Dataset and Evaluation Metrics 4.2 Preprocessing and Experimental Settings 4.3 Results 4.4 Case Study 5 Conclusion References Hierarchical Ensemble for Multi-view Clustering 1 Introduction 2 The Hierarchical Ensemble Framework 2.1 The Proposed Model 2.2 The Numerical Scheme 3 Experiments 3.1 Implementation 3.2 Results and Discussion 4 Conclusion References Structure-Aware Multi-scale Hierarchical Graph Convolutional Network for Skeleton Action Recognition 1 Introduction 2 Related Works 2.1 Traditional Methods for Action Recognition 2.2 Graph-Based Methods for Action Recognition 3 Method 3.1 Graph Convolutional Network 3.2 Pipeline Overview 3.3 SA-HGP Block 3.4 MSF Module 4 Experiments 4.1 Datasets 4.2 Implementation Details 4.3 Comparisons with the State-of-the-Art Methods 4.4 Ablation Study 5 Conclusion References Learning Hierarchical Reasoning for Text-Based Visual Question Answering 1 Introduction 2 Related Work 3 Method 3.1 Multi-modal Embedding Construction 3.2 Object Score Generator 3.3 Text Modality Updater 3.4 Answer Predictor 3.5 Loss Design 4 Experiment 4.1 Datasets and Protocols 4.2 Implementation Details 4.3 Quantitative Analysis 4.4 Ablation Study 4.5 Case Study and Visualization 5 Conclusion References Hierarchical Deep Gaussian Processes Latent Variable Model via Expectation Propagation 1 Introduction 2 Preliminaries 2.1 GP Regression and Approximation 2.2 GP Sparse Approximations 3 Methods 3.1 Stochastic Expectation Propagation 3.2 DGP-LVM 4 Hierarchical Interaction Model 5 Results 6 Conclusion References Adaptive Consensus-Based Ensemble for Improved Deep Learning Inference Cost 1 Introduction 2 Background 3 Adaptive Consensus-Based Ensemble and Experiments 3.1 Performance of Standard Ensemble 3.2 Performance of Adaptive Consensus-Based Ensemble 4 Concluding Remarks and Future Work References Human Pose Estimation Multi-Branch Network for Small Human Pose Estimation 1 Introduction 2 Related Work 2.1 Top-Down Approaches 2.2 Refined Operation 3 Approach 3.1 Multi-Branch Expansion Module 3.2 Multi-Branch Downsample Module 3.3 Refine Module 4 Experiments 4.1 Dataset and Evaluation Metric 4.2 Implementation Details 4.3 Ablation Study 4.4 Comparison with State-of-the-art Methods 5 Conclusion References PNO: Personalized Network Optimization for Human Pose and Shape Reconstruction 1 Introduction 2 Related Work 3 Method 3.1 Problem Formulation 3.2 Personalized Network Optimization 3.3 Geometry-Aware Temporal Constraints 4 Experiments 4.1 Comparing with the State-of-the-Arts Methods 4.2 Ablation Study 4.3 Qualitative Evaluation 5 Conclusion References JointPose: Jointly Optimizing Evolutionary Data Augmentation and Prediction Neural Network for 3D Human Pose Estimation 1 Introduction 2 Related Work 3 Evolutionary Data Augmentation (EDA) 3.1 3D Human Skeleton Representation 3.2 Evolutionary Data Augmentation 4 Joint Training of EDA and HPE 4.1 Pre-training of HPE Model 4.2 Strategy of Reward/Penalty Function 5 Experiments 5.1 Datasets, Evaluation Metrics and Implementation Details 5.2 Comparison with State-of-the-Art Methods 5.3 Visualization of the Training Status 6 Conclusion References DeepRehab: Real Time Pose Estimation on the Edge for Knee Injury Rehabilitation 1 Introduction 2 Related Works 3 Methods 3.1 Refined PoseNet Outputs with Filtering Methods 3.2 DeepRehab for Pose Estimation on the Edge 4 Experiments 4.1 Filtering Configurations 4.2 PoseNet and DeepRehab Configurations 5 Results 5.1 Refined PoseNet Outputs with Filtering Methods 5.2 DeepRehab for Pose Estimation on the Edge 6 Discussion and Summary References Image Processing Subspace Constraint for Single Image Super-Resolution 1 Introduction 2 Related Work 3 The Proposed Method 3.1 Wavelet Transform 3.2 Design of the WaveLoss Function 3.3 Network Architecture 4 Experiment and Analysis 4.1 Datasets and Metrics 4.2 Effectiveness of Subspace Constraint 4.3 Comparisons with the State-of-the-Art Methods 4.4 Object Recognition Performance 5 Conclusion References Towards Fine-Grained Control over Latent Space for Unpaired Image-to-Image Translation 1 Introduction 2 Related Work 3 Methods 3.1 Preliminaries 3.2 Framework Architecture 3.3 Loss Functions 4 Experiments 5 Results 6 Conclusions References FMSNet: Underwater Image Restoration by Learning from a Synthesized Dataset 1 Introduction 2 Related Work 3 Proposed Method 3.1 Synthesizing Underwater Dataset 3.2 Proposed FMSNet CNN Framework 4 Experimental Evaluation and Discussion 4.1 Datasets and Training Strategy 4.2 Network Performance 4.3 Evaluation on Synthesized Underwater Images 4.4 Evaluation on Real-World Underwater Images 4.5 Evaluation by the Subsequent Application 5 Conclusion References Towards Measuring Bias in Image Classification 1 Introduction 2 Related Work 3 An Approach for Measuring Data Bias 3.1 Dataset Generation 3.2 Attribution Methods 3.3 Metrics 4 Experimental Results 4.1 Models 4.2 Measure Bias Based on Metrics 5 Discussion and Conclusion References Towards Image Retrieval with Noisy Labels via Non-deterministic Features 1 Introduction 2 Related Work 3 Proposed Model 3.1 Non-deterministic Features 3.2 Model Structure 3.3 Sampling Non-deterministic Features 3.4 Relative Entropy Loss Function 4 Experiments and Analysis 4.1 Datasets 4.2 Settings and Implementation Details 4.3 Comparison with Deterministic Features 4.4 Influence of 4.5 Analysis on Feature Variance 4.6 Comparison with Hard Mining 5 Conclusion References Image Segmentation Improving Visual Question Answering by Semantic Segmentation 1 Introduction 2 Related Work 3 Proposed Method 3.1 Semantic Segmentation for the Visual Encoder 3.2 Application to Existing Models 4 Experiments 5 Conclusion References Weakly Supervised Semantic Segmentation with Patch-Based Metric Learning Enhancement 1 Introduction 2 Related Work 2.1 Weakly Supervised Semantic Segmentation 2.2 Metric Learning 3 Weakly Supervised Semantic Segmentation with Patch-Based Metric Learning Enhancement 3.1 Classification Task 3.2 CAM-Based Object Proposal 3.3 Patch-Based Metric Learning 3.4 Joint Training Scheme 4 Experiment 4.1 Experimental Setting 4.2 CAM Analysis 4.3 State-of-the-Art Methods Comparison 4.4 Ablation Study on Hard Sampling Strategy 4.5 Computation Complexity 5 Conclusion References ComBiNet: Compact Convolutional Bayesian Neural Network for Image Segmentation 1 Introduction 2 Related Work 3 ComBiNet 3.1 Repeat Block 3.2 Bayesian Inference 4 Experiments 4.1 CamVid 4.2 Bacteria 4.3 Discussion 5 Conclusion References Depth Mapping Hybrid Deep Learning Method for Optic Disc and Cup Segmentation on Stereoscopic Ocular Fundus 1 Introduction 2 Related Work 2.1 Optic Disc and Cup Segmentation 2.2 Retinal Vessel Segmentation 2.3 Multi-view Stereo Depth 3 Depth Mapping Hybrid Deep Learning Method for ODC Segmentation 3.1 Vessel Removing and Depth Computation 3.2 Fusion of ROI Features and Depth Mapping 3.3 Loss Function 4 Experiments 4.1 Implementation 4.2 Datasets and Networks 4.3 Evaluation Metrics 4.4 Results and Analysis 5 Conclusion References RATS: Robust Automated Tracking and Segmentation of Similar Instances 1 Introduction 2 Methods 2.1 Pre-training 2.2 Temporal Extension Using Tracktor 2.3 Propagation and Error Detection 2.4 Annotation Needs and Fine-Tuning 2.5 Benchmark Measures 3 Results 3.1 Experimental Setup 3.2 Database 3.3 Temporal Extension 3.4 Robustness 3.5 Error Detection and Fine-Tuning 4 Summary References Knowledge Distillation Data Diversification Revisited: Why Does It Work? 1 Introduction 2 Background 3 How Does Data Diversification Benefit NMT Models? 3.1 Comparative Analysis and Hypothesis 3.2 Preliminary Study for Modality 3.3 Metric for Data Modality Complexity 3.4 Hypothesis Verification 4 Does the Performance Improvement Come from Knowledge Distillation? 5 How to Reduce the Computational Cost of Data Diversification? 5.1 Adjustable Sampling 5.2 Clean Tuning 5.3 Experiments 6 Conclusion References A Generalized Meta-loss Function for Distillation Based Learning Using Privileged Information for Classification and Regression 1 Introduction 2 Methods 2.1 Proposed Formulation 2.2 Experiments 3 Results and Discussion 3.1 Synthetic Datasets 3.2 MNIST Handwritten Digit Image Classification 3.3 Protein Binding Affinity Prediction 4 Conclusion References Empirical Study of Data-Free Iterative Knowledge Distillation 1 Introduction 2 DF-IKD 2.1 Refinement Operator 2.2 Loss Functions 3 Empirical Evaluation 3.1 Aim 3.2 Materials 3.3 Method 3.4 Results 4 Related Work 5 Conclusion References Adversarial Variational Knowledge Distillation 1 Introduction 2 Related Works 2.1 Knowledge Distillation 2.2 Data-Free Knowledge Distillation 3 Method 3.1 Problem Formulation 3.2 Variational Knowledge Distillation (VKD) 3.3 Adversarial Variational Knowledge Distillation (AVKD) 3.4 Algorithm 4 Experiments 4.1 Experiments Setup 4.2 Implementation Details 4.3 Results 5 Conclusion References Extract then Distill: Efficient and Effective Task-Agnostic BERT Distillation 1 Introduction 2 Preliminary 2.1 Architecture of BERT 2.2 Architecture of Transformer 2.3 Overview of BERT Distillation 3 Methodology 4 Experiments 4.1 Experimental Setup 4.2 Main Results 5 Ablation Study 5.1 The Effect of Each Module 5.2 The Strategy of Layer Selection 6 Related Work 7 Conclusion and Future Work References Medical Image Processing Semi-supervised Learning Based Right Ventricle Segmentation Using Deep Convolutional Boltzmann Machine Shape Model 1 Introduction 2 Convolutional Deep Boltzmann Machine 2.1 Architecture of CDBM 2.2 Training 3 Semi-supervised Learning Network 3.1 Network Training 4 Experiments and Results 5 Conclusion References Improved U-Net for Plaque Segmentation of Intracoronary Optical Coherence Tomography Images 1 Introduction 2 Data and Method 2.1 Data Acquisition and Processing 2.2 Plaque Segmentation Method 3 Experimental Results and Discussion 4 Conclusion References Approximated Masked Global Context Network for Skin Lesion Segmentation 1 Introduction 2 Related Work 3 Methodology 3.1 Approximated Masked Global Context 3.2 Context Modeling Module 3.3 Channel Attention Module 3.4 Hybrid Loss Function 4 Experiments 4.1 Datasets 4.2 Implementation Details 4.3 Ablation Studies of Different Modules 4.4 Comparison to State-of-the-Art 5 Conclusion References DSNet: Dynamic Selection Network for Biomedical Image Segmentation 1 Introduction 2 Related Work 2.1 Model Architectures for Medical Image Segmentation 2.2 Receptive Field 3 Methods 3.1 Dynamic Selection Module 3.2 Overall Architecture 3.3 Loss Function 4 Experiments 4.1 Datasets 4.2 Implementation Details 4.3 Uterus Segmentation 4.4 Gland Segmentation and Lung Segmentation 4.5 Ablation Studies 5 Conclusion References Computational Approach to Identifying Contrast-Driven Retinal Ganglion Cells 1 Introduction 2 Methods 2.1 Modelling Sub-receptive Fields 2.2 Assessing Input-Output Relationship 2.3 Modelling Retinal Behaviour 3 Performance Evaluation 4 Discussion 5 Conclusion References Radiological Identification of Hip Joint Centers from X-ray Images Using Fast Deep Stacked Network and Dynamic Registration Graph 1 Introduction 2 The Proposed Method 2.1 Method Architecture 2.2 Landmark Extraction 2.3 Grey Relational Analysis 2.4 Fast HJC Prediction Module 2.5 Accurate HJC Positioning Module 3 Experimental Results 3.1 Data Processing and Analysis 3.2 Experimental Settings 3.3 Comparison with State-of-the-Art Methods 3.4 Ablation Analysis 4 Conclusion References A Two-Branch Neural Network for Non-Small-Cell Lung Cancer Classification and Segmentation 1 Introduction 2 Related Work 2.1 Semantic Segmentation 2.2 Pathological Classfication 3 Method 3.1 Segmentation Branch 3.2 Classification Branch 4 Experiments 4.1 Dataset 4.2 Implementation Detail 4.3 Results and Analysis 5 Conclusion References Uncertainty Quantification and Estimation in Medical Image Classification 1 Introduction 2 Background and Related Work 2.1 Bayesian Probabilistic Modeling 2.2 Monte-Carlo Dropout as a Bayesian Approximation in Neural Networks 2.3 Deep Ensemble Approach 2.4 Ensemble MC Dropout Approach 2.5 Medical Pre-screening 3 Datasets 4 Experiments and Results 4.1 Data Preprocessing 4.2 Uncertainty Quantification on SARS-CoV2 4.3 Uncertainty Quantification on BreaKHis 5 Conclusion and Future Work References Labeling Chest X-Ray Reports Using Deep Learning 1 Introduction 2 Related Work 3 Dataset and Method 3.1 Dataset 3.2 Language Model 3.3 Multi-label Classifier 4 Experiment 5 Evaluation 5.1 Result 5.2 Discussion and Future Work 5.3 Conclusion References Author Index