ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Artificial muscles : applications of advanced polymeric nanocomposites

دانلود کتاب ماهیچه های مصنوعی: کاربردهای نانوکامپوزیت های پلیمری پیشرفته

Artificial muscles : applications of advanced polymeric nanocomposites

مشخصات کتاب

Artificial muscles : applications of advanced polymeric nanocomposites

ویرایش: [Second ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9781000473322, 1000473384 
ناشر:  
سال نشر: 2022 
تعداد صفحات: [409] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 37 Mb 

قیمت کتاب (تومان) : 38,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Artificial muscles : applications of advanced polymeric nanocomposites به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ماهیچه های مصنوعی: کاربردهای نانوکامپوزیت های پلیمری پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Contents
List of Figures
List of Tables
Acronyms
Symbols
About the Author
Prologue
Chapter 1: Introduction to Ionic Polymers, Ionic Gels and Stimuli-Responsive Materials and Artificial Muscles
	1.1. Introduction
	1.2. A Brief History of Electroactive Polymers (EAPS) and Artificial/Synthetic Muscles
		1.2.1. Electrically Conductive and Photonic Polymers
		1.2.2. Magnetically Activated Polymer Gels and Polymers
		1.2.3. Electronic EAPs/Ferroelectric Polymers
		1.2.4. Electrets and Piezoelectric Polymers
		1.2.5. Dielectric Elastomer EAPs
		1.2.6. Liquid Crystal Elastomer (LCE) Materials
		1.2.7. Ionic EAPs/Ionic Polymer Gels (IPGs)
		1.2.8. Nonionic Polymer Gels/EAPs
		1.2.9. Ionic Polymer-Metal Composites (IPMCs)
		1.2.10. Conductive Polymers (CPs) or Synthetic Metals
		1.2.11. Shape-Memory Alloys (SMAs) and Shape-Memory Polymers (SMPs)
		1.2.12. Metal Hydride Artificial Muscle Systems
		1.2.13. Electrorheological Fluids (ERFs) Smart Materials
		1.2.14. Magnetorheological Fluids (MRFs) Smart Materials
		1.2.15. Magnetic Shape Memory (MSM) Smart Materials
		1.2.16. Giant Magnetostrictive Materials (GMMs)
		1.2.17. Fibrous Ionic Polyacrylonitrile Gel (PAN, PANG) as Artificial Muscles
		1.2.18. Piezoresistive Materials as Smart Sensors
		1.2.19. Electrostrictive Materials as Smart Actuators and Sensors
		1.2.20. Hydrogels and Nanogels as Smart Actuators and Sensors
		1.2.21. New Stimuli-Responsive Smart Materials Actuators and Sensors
			1.2.21.1. Giant Magnetoresistive (GMR) Materials
			1.2.21.2. Mechanochromic Smart Materials and Mechanical Metamaterials
			1.2.21.3. Smart Nanogels for Biomedical Applications
			1.2.21.4. Janus Particles as Smart Materials
	1.3. A Brief History of Electromotive Polymers
		1.3.1. Contraction Behavior
		1.3.2. Mechanisms
	1.4. Role of Microparticles in Contraction of Gels
Chapter 2: Fundamentals of Ionic Polymer-Metal Composites (IPMCs) and Nanocomposites (IPMNCs)
	2.1. Introduction
	2.2. Performance Characteristics
		2.2.1. Mechanical Performance
		2.2.2. Electrical Performance
		2.2.3. Improved Force Performance of IPMCs
		2.2.4. A View From Linear Irreversible Thermodynamics
		2.2.5. Thermodynamic Efficiency
		2.2.6. Cryogenic Properties of IPMNC
		2.2.7. Internal and External Circulatory Properties of IPMCs
		2.2.8. Near-D.C. Mechanical Sensing, Transduction and Energy-Harvesting Capabilities of IPMCs in Flexing Bending and Compression Modes
	2.3. Additional Reports on Force Optimization
		2.3.1. Recent Reports and Discoveries on IPMCs
	2.4. Electric Deformation Memory Effects, Magnetic IPMNCs, and Self-Oscillatory Phenomena in Ionic Polymers
Chapter 3: Ionic Polymer-Metal Nanocomposites: (IPMCs and IPMNCs) Manufacturing Techniques
	3.1. Introduction
	3.2. IPMNC Base Materials
		3.2.1. In General
		3.2.2. Water Structure Within the IPMNC Base Materials
	3.3. Manufacturing Techniques
		3.3.1. In General
		3.3.2. IPMNC and IPCNC Manufacturing Recipe
		3.3.3. IPMNC Force Optimization
		3.3.4. Effects of Different Cations
		3.3.5. Electrode Particle Control
		3.3.6. Additional Results on Stretched IPMNCs to Enhance Force Generation and Other Physical Properties
			3.3.6.1. Platinum-Palladium – New Phenomenon
		3.3.7. Effective Surface Electrodes
		3.3.8. An Economic Approach – Physical Metal Loading
		3.3.9. Scaling
		3.3.10. Technique of Making Heterogeneous IPMNC Composites
Chapter 4: Ionic Polyacrylonitrile (PAN) Fibrous Artificial Muscles/Nanomuscles
	4.1. Introduction
	4.2. PAN Fabrication
	4.3. PAN Characterization
		4.3.1. Isotonic Characterization
		4.3.2. Isoionic Test
		4.3.3. PAN Synthetic Muscles’ Capability Measurements
			4.3.3.1. SEM Studies
		4.3.4. Effects of Different Cations
		4.3.5. Electric Activation of PAN Fibers
		4.3.6. Additional Results
		4.3.7. Additional Experimental Results
			4.3.7.1. Results
		4.3.8. PAN Actuator System Design and Fabrication
		4.3.9. PAN Performance Testing in an Acidic Environment
			4.3.9.1. Procedures
			4.3.9.2. Results
		4.3.10. PAN Film Casting Experiment
		4.3.11. PAN Actuator System Design and Fabrication
		4.3.12. PAN Casting Experiment
		4.3.13. Further PAN Actuator System Design and Fabrication
	4.4. PAN pH Meters
		4.4.1. Skeletal Muscles Made with Fibrous PAN Artificial Muscles
	4.5. Electroactive PAN Muscles
	4.6. Electrochemomechanical Actuation in Conductive Polyacrylonitrile (C-PAN) Fibers and Nanofibers
		4.6.1. Introduction
		4.6.2. Preparation of Ionically Active PAN
		4.6.3. Direct Metal Deposition Technique
		4.6.4. Graphite and Gold Fiber Electrode Woven Into PAN Muscle as an Adjunct Electrode
		4.6.5. Toward Nanoscale Artificial Muscles and Motors
		4.6.6. Experiment
		4.6.7. Nanofiber Electrospinning in General
		4.6.8. Fabrication of a PAN Actuator System
		4.6.9. Contraction and Elongation Mechanism
		4.6.10. Mathematical Modeling of Contraction and Elongation of C-PAN Fibers
			4.6.10.1. Basic Modeling
			4.6.10.2. Modeling
			4.6.10.3. More Detailed Mathematical Modeling PAN Fiber Contraction/Expansion
			4.6.10.4. PAN Actuator System Design and Fabrication
			4.6.10.5. Further Modeling
			4.6.10.6. PAN Actuator Fabrication
			4.6.10.7. Additional Modeling
			4.6.10.8. Small-scale PAN Actuator Fabrication
			4.6.10.9. Small-scale PAN Actuator Fabrication and Testing
			4.6.10.10. PAN Actuator System Testing
		4.6.11. Electrocapillary Transport Modeling
		4.6.12. Other Aspects of PAN Muscle Behavior
		4.6.13. Force Generation with pH Difference
			4.6.13.1. Mechanical Property of Single PAN Fiber
		4.6.14. Effects of Electrode Deterioration on Force Generation
	4.7. Five-Fingered Hand Design and Fabrication Using PAN Fiber Bundle Muscles
		4.7.1. Fabrication of Five-Fingered Hand Equipped with Fiber Bundle PAN Muscles
		4.7.2. Additional Mechanical Property Measurement of Single PAN Fiber
	4.8. Micro-PAN Fiber Observation
	4.9. Conclusions
Chapter 5: PAMPS Ionic Polymeric Artificial Muscles
	5.1. Introduction
	5.2. Pamps Gels
	5.3. Gel Preparation
	5.4. PAMPS Gel Application
		5.4.1. Adaptive Optical Lenses
		5.4.2. Theoretical Model
		5.4.3. Electrically Controllable Ionic Polymeric Gels as Adaptive Optical Lenses
		5.4.4. Experimental Results: PAMPS
	5.5. Electroactive PAMPS Gel Robotic Structures
	5.6. Engineering Strength Considerations on PAMPS Ionic Gels
	5.7. Ionic Gel Robotics
	5.8. Results and Conclusions
Chapter 6: Modeling and Simulation of IPMCs as Distributed Soft Biomimetic Nanosensors, Nanoactuators, Nanotransducers and Artificial Muscles
	6.1. Introduction
	6.2. Continuum Electrodynamics of Ionic Polymeric Gels’ Swelling and Deswelling
		6.2.1. Basic Formulation
		6.2.2. Computer Simulation of Symmetric Swelling and Contraction of Polyelectrolyte Gels
		6.2.3. Gel Contraction/Shrinkage Example Based on the Continuum-Diffusion Model
	6.3. Continuum-Diffusion Electromechanical Model for Asymmetric Bending of Ionic Polymeric Gels
		6.3.1. Analytical Modeling
	6.4. Continuum Microelectromechanical Models
		6.4.1. Theoretical Modeling
		6.4.2. Numerical Simulation
	6.5. Microelectromechanical Modeling of Asymmetric Deformation of Ionic Gels
	6.6. Time-Dependent Phenomenological Model
		6.6.1. Two-Component Transportmodel
		6.6.2. Linear Irreversible Thermodynamic Modeling
			6.6.2.1. Introduction
			6.6.2.2. Steady-State Solutions
		6.6.3. Expanded Ion Transport Modeling for Complex Multicomponent and Multicationic Systems and Ionic Networks
		6.6.4. Equivalent Circuit Modeling
	6.7. Conclusions
Chapter 7: Sensing, Transduction, Feedback Control and Robotic Applications of Polymeric Artificial Muscles
	7.1. Introduction
	7.2. Sensing Capabilities of IPMCs
		7.2.1. Basics of Sensing and Transduction of IPMCs
		7.2.2. Electrical Properties
		7.2.3. Experiment and Discussion
	7.3. Evaluation of IPMCs for Use as Near-D.C. Electromechanical Sensors
		7.3.1. Introduction
		7.3.2. Background of Near DC Sensing
		7.3.3. Experiment Setup
		7.3.4. Experiment Results
		7.3.5. Discussion and Conclusions
		7.3.6. Advances in Sensing and Transduction
	7.4. Simulation and Control of Ionoelastic Beam Dynamic Deflection Model
		7.4.1. Introduction to Modeling of Elastic Beams
		7.4.2. Static Deflection
		7.4.3. Dynamic Case
		7.4.4. Variable Moments
			7.4.4.1. Moment Modification
			7.4.4.2. Extension
			7.4.4.3. Validation
		7.4.5. Summary
		7.4.6. Feedback Control in Bending Response of IPMNC Actuators
		7.4.7. Results
	7.5. Conclusions
Chapter 8: Conductive or Ion-Conjugated Polymers as Artificial Muscles
	8.1. Introduction
	8.2. Deformation of Conducting or Conjugated Polymers
Chapter 9: Engineering, Industrial and Medical Applications of Ionic Polymer–Metal Nanocomposites
	9.1. Introduction
	9.2. Engineering and Industrial Applications
		9.2.1. Mechanical Grippers
		9.2.2. Three-Dimensional Actuator
		9.2.3. Robotic Swimming Structure
		9.2.4. Biomimetic Noiseless Swimming Robotic Fish
		9.2.5. Linear Actuators
		9.2.6. IPMNC Contractile Serpentine and Slithering Configurations
		9.2.7. Metering Valves
		9.2.8. Diaphragm Pumps Using Flexing IPMNC Strips and Diaphragms
			9.2.8.1. Diaphragm Pump Designs
			9.2.8.2. Exoskeleton Human Joint Power Augmentation (ESHPA)
		9.2.9. Microelectromechanical Systems
		9.2.10. Electromechanical Relay Switches
		9.2.11. Continuous Variable Aperture Mirrors and Antenna Dishes
		9.2.12. Slithering Device
		9.2.13. Parts Orientation/Feeding
		9.2.14. Musical Instruments
		9.2.15. Flat Keyboards, Data Attire and Braille Alphabet
	9.3. Biomedical Applications
		9.3.1. Artificial Ventricular or Cardiac-Assist Muscles
			9.3.1.1. Electroactive Polymer-Powered Miniature Heart Compression Experiment
		9.3.2. Surgical Tool
		9.3.3. Peristaltic Pumps
		9.3.4. Artificial Smooth Muscle Actuators
		9.3.5. Artificial Sphincter and Ocular Muscles
		9.3.6. Incontinence Assist Devices
		9.3.7. Correction of Refractive Errors of the Human Eyes and Bionic Eyes and Vision
	9.4. Aerospace Applications
		9.4.1. Composite Wing Flap
		9.4.2. Resonant Flying Machine
			9.4.2.1. Artificial Coral Reefs for Underwater Mine and Moving Object Detection
			9.4.2.2. Other Uses
Chapter 10: Epilogue and Conclusions
	10.1. Epilogue
	10.2. Conclusion: PAN Muscles
	10.3. Conclusion: IPMC Actuators
	10.4. Conclusion: IPMC Sensors and Transducers
References
Author Index
Subject Index




نظرات کاربران