دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: سری: ISBN (شابک) : 9781119821274 ناشر: سال نشر: 2022 تعداد صفحات: [361] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 25 Mb
در صورت تبدیل فایل کتاب Artificial Intelligent Techniques for Wireless Communication and Networking (2022) [Kanthavel et al] [] به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنیکهای هوش مصنوعی برای ارتباطات و شبکهسازی بیسیم (2022) [کانتاول و همکاران] [] نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنیکهای هوشمند مصنوعی برای ارتباطات و شبکهسازی بیسیم 20 فصل به اصول و تکنیکهای هوش مصنوعی مورد استفاده در ارتباطات و شبکههای بیسیم میپردازند و مزایا، عملکرد و نقش آتی آنها را در این زمینه مشخص میکنند. ارتباطات و شبکه های بی سیم بر اساس مفاهیم و تکنیک های هوش مصنوعی در این کتاب بررسی شده است، به طور خاص با تمرکز بر تحقیقات فعلی در این زمینه با برجسته کردن نتایج تجربی همراه با مفاهیم نظری. امکان بکارگیری مکانیزم های هوش مصنوعی در جهت جنبه های امنیتی در حوزه ارتباطات شرح داده شده است. همچنین جنبه کاربردی فناوریهای یکپارچه که نوآوریهای مبتنی بر هوش مصنوعی، بینشها، پیشبینیهای هوشمند، بهینهسازی هزینه، مدیریت موجودی، فرآیندهای شناسایی، مکانیسمهای طبقهبندی، تکنیکهای سنجش طیف مشارکتی، معماری شبکه موقت و مبتنی بر پروتکل و شبیهسازی را افزایش میدهد، مورد بررسی قرار گرفته است. محیط ها پژوهشگران مخاطب، مهندسان فناوری اطلاعات صنعت و دانشجویان فارغالتحصیل که روی شبکههای حسگر بیسیم مبتنی بر هوش مصنوعی، 5G، IoT، یادگیری عمیق، یادگیری تقویتی، و رباتیک در WSN و فناوریهای مرتبط کار میکنند و پیادهسازی میکنند.
ARTIFICIAL INTELLIGENT TECHNIQUES FOR WIRELESS COMMUNICATION AND NETWORKING The 20 chapters address AI principles and techniques used in wireless communication and networking and outline their benefit, function, and future role in the field. Wireless communication and networking based on AI concepts and techniques are explored in this book, specifically focusing on the current research in the field by highlighting empirical results along with theoretical concepts. The possibility of applying AI mechanisms towards security aspects in the communication domain is elaborated; also explored is the application side of integrated technologies that enhance AI-based innovations, insights, intelligent predictions, cost optimization, inventory management, identification processes, classification mechanisms, cooperative spectrum sensing techniques, ad-hoc network architecture, and protocol and simulation-based environments. Audience Researchers, industry IT engineers, and graduate students working on and implementing AI-based wireless sensor networks, 5G, IoT, deep learning, reinforcement learning, and robotics in WSN, and related technologies.
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface 1 Comprehensive and Self-Contained Introduction to Deep Reinforcement Learning 1.1 Introduction 1.2 Comprehensive Study 1.2.1 Introduction 1.2.2 Framework 1.2.3 Choice of the Learning Algorithm and Function Approximator Selection 1.2.3.1 Auxiliary Tasks 1.2.3.2 Modifying the Objective Function 1.3 Deep Reinforcement Learning: Value-Based and Policy-Based Learning 1.3.1 Value-Based Method 1.3.2 Policy-Based Method 1.4 Applications and Challenges of Applying Reinforcement Learning to Real-World 1.4.1 Applications 1.4.2 Challenges 1.5 Conclusion References 2 Impact of AI in 5G Wireless Technologies and Communication Systems 2.1 Introduction 2.2 Integrated Services of AI in 5G and 5G in AI 2.2.1 5G Services in AI 2.2.1.1 Next-Generation Edge Convergence With AI Systems on Chip 2.2.1.2 Massive Device Concurrency Replenishing AI Data Lakes in Real Time 2.2.1.3 Ultra-Fast, High-Volume Streaming for Low-Latency AI 2.2.2 AI Services in 5G 2.2.2.1 Distributed AI 2.2.2.2 AI for IT Operations (AIOps) 2.2.2.3 Network Slicing 2.2.3 Evolution With AI in the 5G Era 2.2.3.1 Agile Network Construction 2.2.3.2 Intelligent Operations and Management 2.2.3.3 Smart Operations 2.3 Artificial Intelligence and 5G in the Industrial Space 2.4 Future Research and Challenges of Artificial Intelligence in the Mobile Networks 2.4.1 Research Directions 2.4.1.1 AI Is Being Adopted Into Mobile Networks by Communication Service Provider Now 2.4.1.2 AI and Customer Experience 2.4.1.3 Recouping the Network Investments That 5G Demands 2.4.1.4 Data Challenges Presented by Artificial Intelligence Adoption 2.4.1.5 Network Intelligence and Automation 2.4.2 Challenges to a 5G-Powered AI Network 2.4.2.1 Dealing With Interference 2.4.2.2 Dealing With Latency 2.4.2.3 Solving Latency 2.5 Conclusion References 3 Artificial Intelligence Revolution in Logistics and Supply Chain Management 3.1 Introduction 3.2 Theory—AI in Logistics and Supply Chain Market 3.2.1 AI Impacts 3.2.2 Revolutionizing Global Market 3.2.3 Role of AI 3.2.4 AI Trends in Logistics 3.2.4.1 Anticipatory Logistics 3.2.4.2 Self-Learning Systems 3.2.5 AI Trends in Supply Chain 3.3 Factors to Propel Business Into the Future Harnessing Automation 3.3.1 Logistics 3.3.1.1 Predictive Capabilities 3.3.1.2 Robotics 3.3.1.3 Big Data 3.3.1.4 Computer Vision 3.3.1.5 Autonomous Vehicles 3.3.2 Supply Chain 3.3.2.1 Bolstering Planning & Scheduling Activities 3.3.2.2 Intelligent Decision-Making 3.3.2.3 End-End Visibility 3.3.2.4 Actionable Analytical Insights 3.3.2.5 Inventory and Demand Management 3.3.2.6 Boosting Operational Efficiencies 3.4 Conclusion References 4 An Empirical Study of Crop Yield Prediction Using Reinforcement Learning 4.1 Introduction 4.2 An Overview of Reinforcement Learning in Agriculture 4.2.1 Reinforcement Terminology and Definitions 4.2.2 Review on Agricultural Reinforcement Learning 4.3 Reinforcement Learning Startups for Crop Prediction 4.3.1 Need for Crop Prediction 4.3.2 Reinforcement Learning Impacts on Agriculture 4.3.3 Deep Q Networks for Crop Prediction 4.4 Conclusion References 5 Cost Optimization for Inventory Management in Blockchain and Cloud 5.1 Introduction 5.2 Blockchain: The Future of Inventory Management 5.2.1 Issues Faced in Inventory Management 5.2.2 Inventory Management Scenario 5.2.3 A Primer on Blockchain Technology 5.2.4 Blockchain for Proactive Inventory Management 5.3 Cost Optimization for Blockchain Inventory Management in Cloud 5.3.1 Optimizing Blockchain Inventory Management 5.3.2 Best Practices of Blockchain Inventory Cost Optimization in Cloud 5.3.2.1 Criticality Analysis 5.3.2.2 Demand Forecasting 5.3.2.3 Lead Time Forecasting 5.3.2.4 Issue Size Forecasting 5.3.2.5 Economic Modeling 5.3.2.6 Optimization of Reordering Parameters 5.3.2.7 Exception Management 5.3.2.8 Inventory Segmentation 5.3.2.9 Spares Risk Assessment 5.3.2.10 Spares Pooling 5.3.2.11 Knowledge Capture 5.3.2.12 Reporting Inventory 5.4 Cost Reduction Strategies in Blockchain Inventory Management in Cloud 5.4.1 Reduce Useless Inventory 5.4.2 Let Experts Manage Inventory (VMI) 5.4.3 Develop Relationships With Suppliers 5.4.4 Install Industrial Vending Machines 5.4.5 Order Smaller, More Frequently 5.5 Conclusion References 6 Review of Deep Learning Architectures Used for Identification and Classification of Plant Leaf Diseases 6.1 Introduction 6.2 Literature Review 6.3 Proposed Idea 6.4 Reference Gap 6.5 Conclusion References 7 Generating Art and Music Using Deep Neural Networks 7.1 Introduction 7.1.1 Traditional Approach 7.1.2 Modern Computing Approach 7.2 Related Works 7.2.1 Feeling Investigation on Social Media 7.3 System Architecture 7.3.1 Art Module 7.3.2 Music Module 7.4 System Development 7.4.1 Upload Module 7.4.2 Conversion Module 7.4.3 Transformation Module 7.4.4 Loading Dataset Module 7.4.5 Optimizing Module 7.4.5.1 Calculating Loss Function Lcontent(c,x) & Lstyle(s,x) 7.5 Algorithm-LSTM 7.6 Result 7.6.1 Sample Input and Output 7.7 Conclusions References 8 Deep Learning Era for Future 6G Wireless Communications—Theory, Applications, and Challenges 8.1 Introduction 8.2 Study of Wireless Technology 8.2.1 Overview 8.2.2 Background Study 8.2.3 6G Wireless Technology 8.2.4 Influence of AI in 6G Wireless Communication 8.3 Deep Learning Enabled 6G Wireless Communication 8.3.1 Deep Learning Techniques for 6G Networks 8.3.2 Predicted Services in the 6G Era 8.3.2.1 Internet-of-(Every)Thing 8.3.2.2 Connected Vehicles 8.3.2.3 Smart Cities 8.3.2.4 Robotics and Industry 8.4 Applications and Future Research Directions Conclusion References 9 Robust Cooperative Spectrum Sensing Techniques for a Practical Framework Employing Cognitive Radios in 5G Networks 9.1 Introduction 9.2 Spectrum Sensing in Cognitive Radio Networks 9.3 Collaborative Spectrum Sensing for Opportunistic Access in Fading Environments 9.4 Cooperative Sensing Among Cognitive Radios 9.5 Cluster-Based Cooperative Spectrum Sensing for Cognitive Radio Systems 9.6 Spectrum Agile Radios: Utilization and Sensing Architectures 9. 7 Some Fundamental Limits on Cognitive Radio 9.8 Cooperative Strategies and Capacity Theorems for Relay Networks 9.9 Research Challenges in Cooperative Communication 9.10 Conclusion References 10 Natural Language Processing 10.1 Introduction 10.2 Conclusions References 11 Class Level Multi-Feature Semantic Similarity-Based Efficient Multimedia Big Data Retrieval 11.1 Introduction 11.2 Literature Review 11.3 Class Level Semantic Similarity-Based Retrieval 11.4 Results and Discussion 11.4.1 Performance Analysis vs Number of Classes 11.4.2 Performance Analysis vs. Number of Terms/Relations Conclusion References 12 Supervised Learning Approaches for Underwater Scalar Sensory Data Modeling With Diurnal Changes 12.1 Introduction 12.2 Literature Survey 12.2.1 Underwater Channel Models 12.3 Proposed Work 12.3.1 Statistical Analysis Using Software Tools 12.4 Results 12.4.1 Statistical Works 12.4.1.1 Auto Correlation and Partial Auto Correlation Analysis of Depth and Temperature 12.4.2 Attenuation Results 12.5 Conclusion and Future Work References 13 Multi-Layer UAV Ad Hoc Network Architecture, Protocol and Simulation 13.1 Introduction 13.1.1 Flying Ad Hoc Networks (FANETs) 13.1.2 Multi-Layer-Based UAVs Ad Hoc Network 13.2 Background 13.3 Issues and Gap Identified 13.4 Main Focus of the Chapter 13.5 Mobility 13.5.1 Mobility Model 13.5.2 Reference-Point-Group Mobility Model (RPGM) 13.5.3 Spatial Dependency-Based Mobility Model 13.5.3.1 Degree of Spatial-Dependency 13.6 Routing Protocol 13.6.1 Data-Centric-Routing-Protocol (DCRP) 13.7 High Altitude Platforms (HAPs) 13.7.1 Characteristics of HAP 13.7.2 Advantages of HAPs 13.8 Connectivity Graph Metrics 13.8.1 Link Changes Counts 13.8.2 Link Duration 13.8.3 Path-Availability 13.9 Aerial Vehicle Network Simulator (AVENs) 13.10 Conclusion References 14 Artificial Intelligence in Logistics and Supply Chain 14.1 Introduction to Logistics and Supply Chain Agriculture Manufacturing Artificial Intelligence (AI) Tools Transportation 14.1.1 Elements of Supply Chain Network 14.1.2 Supply Chain Performances and Costing 14.1.2.1 Performance Measure 14.1.2.2 Procurement Cost 14.1.2.3 Transportation Cost 14.1.2.4 Inventory Cost 14.2 Recent Research Avenues in Supply Chain 14.2.1 Vendor Selection 14.2.2 Transportation 14.2.3 Inventory Routing 14.2.4 Agent-Based Modeling 14.2.5 Reverse Logistics 14.3 Importance and Impact of AI 14.3.1 Benefits 14.3.2 Challenges 14.3.2.1 Supply Chain Risk Estimation 14.3.2.2 Green Supply Chain (GSC) 14.4 Research Gap of AI-Based Supply Chain 14.4.1 Healthcare 14.4.1.1 Pharmaceutical 14.4.1.2 Medical Devices 14.4.1.3 Fast Moving Consumer Goods 14.4.2 Networked Manufacturing 14.4.3 Humanitarian Supply Chain Network Conclusion References 15 Hereditary Factor-Based MultiFeatured Algorithm for Early Diabetes Detection Using Machine Learning 15.1 Introduction 15.1.1 Role of Data Mining Tools in Healthcare for Predicting Various Diseases 15.2 Literature Review 15.3 Objectives of the Proposed System 15.4 Proposed System 15.5 HIVE and R as Evaluation Tools 15.6 Decision Trees 15.7 Results and Discussions 15.8 Conclusion References 16 Adaptive and Intelligent Opportunistic Routing Using Enhanced Feedback Mechanism 16.1 Introduction 16.2 Related Study 16.3 System Model 16.3.1 Dividing Packets Into Blocks 16.3.2 Packet Transmission 16.3.3 Feedback 16.4 Experiments and Results 16.5 Conclusion References 17 Enabling Artificial Intelligence and Cyber Security in Smart Manufacturing 17.1 Introduction 17.2 New Development of Artificial Intelligence 17.3 Artificial Intelligence Facilitates the Development of Intelligent Manufacturing 17.4 Current Status and Problems of Green Manufacturing 17.4.1 Green Manufacturing 17.4.2 Current Status and Major Problems 17.4.2.1 Isolation of Information Among Multiple Fields 17.4.2.2 Diverse Information Types and Different Kinds of Data Lack of a Process-Safety-Oriented Decision-Making System Lack of Early Warning and Risk Tracing Systems 17.5 Artificial Intelligence for Green Manufacturing 17.5.1 Information Integration via Knowledge Graphs 17.5.1.1 Process-Safety Information Extraction 17.5.1.2 Process-Safety Knowledge Fusion 17.5.1.3 Process-Safety Knowledge Processing 17.5.2 Risk Assessment and Decision-Making Using Bayesian Networks 17.5.3 Incident Early Warning Based on Deep Learning 17.6 Detailed Description of Common Encryption Algorithms 17.6.1 Triple DES (3DES)—(Triple Data Encryption Standard) 17.7 Current and Future Works 17.8 Conclusion References 18 Deep Learning in 5G Networks 18.1 5G Networks 18.2 Artificial Intelligence and 5G Networks 18.3 Deep Learning in 5G Networks Conclusion References 19 EIDR Umpiring Security Models for Wireless Sensor Networks 19.1 Introduction 19.2 A Review of Various Routing Protocols 19.2.1 Trust-Based Routing Protocols 19.2.2 Intrusion Detection System 19.2.3 The Network Layer Routing Protocols 19.2.3.1 WRP 19.2.3.2 AODV 19.2.3.3 LEACH Protocols 19.3 Scope of Chapter 19.3.1 Objective 19.3.2 Contributions 19.3.3 Performance Evaluations 19.4 Conclusions and Future Work References 20 Artificial Intelligence in Wireless Communication 20.1 Introduction 20.2 Artificial Intelligence: A Grand Jewel Mine 20.3 Wireless Communication: An Overview 20.4 Wireless Revolution 20.5 The Present Times 20.6 Artificial Intelligence in Wireless Communication 20.6.1 How the Two Worlds Collided 20.6.2 Cognitive Radios 20.7 Artificial Neural Network 20.8 The Deployment of 5G 20.9 Looking Into the Features of 5G 20.10 AI and the Internet of Things (IoT) 20.11 Artificial Intelligence in Software-Defined Networks (SDN) 20.12 Artificial Intelligence in Network Function Virtualization 20.13 Conclusion References Index Also of Interest