دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Lavanya Sharma (editor). Pradeep Kumar Garg (editor)
سری:
ISBN (شابک) : 0367690802, 9780367690809
ناشر: Chapman and Hall/CRC
سال نشر: 2021
تعداد صفحات: 265
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 مگابایت
در صورت تبدیل فایل کتاب Artificial Intelligence: Technologies, Applications, and Challenges به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی: فناوریها، کاربردها و چالشها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هوش مصنوعی: فناوریها، برنامهها و چالشها منبع ارزشمندی برای خوانندگان است تا کاربرد هوش مصنوعی، برنامهها، چالشها و فناوریهای زیربنایی آن را در موارد مختلف کشف کنند. حوزه های کاربردی با استفاده از یک سری برنامههای کاربردی حال و آینده، مانند امنیت داخلی و خارجی، پردازش سیگنال گرافیکی، جراحی رباتیک، پردازش تصویر، تشخیص کاراکتر، واقعیت افزوده، تشخیص و ردیابی اشیا، نظارت بر ترافیک هوشمند، تصویربرداری پزشکی بخش اورژانس و بسیاری موارد دیگر، این نشریه از خوانندگان برای کسب دانش عمیق تر و اجرای ابزارهای هوش مصنوعی حمایت می کند.
این کتاب پوشش جامعی ارائه می دهد. از ضروری ترین موضوعات، از جمله:
این کتاب منبعی ایدهآل برای متخصصان فناوری اطلاعات، محققان، دانشجویان زیر دیپلم یا فوقلیسانس، شاغلین و توسعهدهندگان فناوری خواهد بود. علاقه مند به کسب بینش در مورد هوش مصنوعی با یادگیری عمیق، اینترنت اشیا و یادگیری ماشین، حوزه های برنامه های کاربردی حیاتی، فن آوری ها و راه حل هایی برای رسیدگی به چالش های مرتبط هستند.
Artificial Intelligence: Technologies, Applications, and Challenges is an invaluable resource for readers to explore the utilization of Artificial Intelligence, applications, challenges, and its underlying technologies in different applications areas. Using a series of present and future applications, such as indoor-outdoor securities, graphic signal processing, robotic surgery, image processing, character recognition, augmented reality, object detection and tracking, intelligent traffic monitoring, emergency department medical imaging, and many more, this publication will support readers to get deeper knowledge and implementing the tools of Artificial Intelligence.
The book offers comprehensive coverage of the most essential topics, including:
This book will be an ideal resource for IT professionals, researchers, under or post-graduate students, practitioners, and technology developers who are interested in gaining insight to the Artificial Intelligence with deep learning, IoT and machine learning, critical applications domains, technologies, and solutions to handle relevant challenges.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments Editors Contributors Section I: Introduction to Artificial Intelligence Chapter 1: Overview of Artificial Intelligence 1.1 Introduction 1.2 Definitions of AI 1.3 History of AI 1.4 The Importance of AI 1.5 Processes Involved with AI 1.6 AI as an Interdisciplinary Tool 1.7 Types of AI 1.8 Advantages and Disadvantages of AI 1.9 Some Examples of AI 1.10 Applications of AI 1.11 Summary References Chapter 2: Knowledge Representation in Artificial Intelligence:: An Overview 2.1 Introduction 2.2 Types of Knowledge 2.3 The Relation between Intelligence and Knowledge 2.4 Life Cycle of Knowledge in AI 2.5 Different Approaches to Knowledge Representation 2.6 Basic Requirements for Knowledge Representation (KR) System 2.7 Techniques of Knowledge Representation 2.8 Real-Time Challenge 2.9 Conclusion References Chapter 3: Programming Languages Used in AI 3.1 Introduction 3.2 An Overview of AI 3.3 The Role of AI 3.3.1 AI in Agriculture 3.3.2 AI in Security 3.3.3 AI in Education 3.3.4 AI in Health Care 3.3.5 AI in Industry 3.4 Languages Used in AI 3.4.1 Java 3.4.2 C++ 3.4.3 Python 3.4.4 LISP (LISt Processing) 3.4.5 Prolog 3.4.6 R 3.5 Conclusion References Section II: Artificial Intelligence: Tools and Technologies Chapter 4: Image Processing Using Artificial Intelligence:: Case Study on Classification of High-Dimensional Remotely Sensed Images 4.1 Introduction 4.2 Issues and Challenges 4.3 Case Study on the Classification of Airborne ROSIS-3 Data Using ML Approach 4.3.1 ROSIS-3 Hyperspectral Dataset 4.3.2 Removal of Redundant Spectral Bands of ROSIS-3 Dataset 4.3.3 Selection of Optimal Features 4.3.4 Calibration and Optimization of RF Classifier Model Parameters 4.3.5 Evaluation of RF Classifier 4.3.6 Results and Discussion 4.4 Conclusion and Future Directive References Chapter 5: Artificial Intelligence and Image Processing 5.1 Introduction 5.2 Image Processing 5.2.1 Images 5.2.2 Real-Time Usage of Image Processing 5.3 Artificial Intelligence 5.4 Artificial Intelligence in Image Processing 5.5 Proposed Methodology 5.5.1 Sobel Edge Detection 5.5.2 Threshold 5.6 Ant Colony Optimization 5.7 Entropy 5.8 Result Analysis 5.9 Conclusion References Chapter 6: Deep Learning Applications on Very High-Resolution Aerial Imagery 6.1 Introduction 6.2 Machine Learning 6.3 Deep Learning 6.3.1 Comparison between ML and DL 6.3.2 Types of Neural Network 6.3.3 Convolutional Neural Network (CNN) 6.3.4 Different CNN Architectures 6.3.5 Loss Functions and Optimization 6.3.5.1 Loss Functions for Regression 6.3.5.2 Loss Functions for Classification 6.3.5.3 Optimization 6.4 Deep Learning Applications in Remote Sensing 6.4.1 Image Scene Classification 6.4.2 Object Detection 6.4.3 Semantic Segmentation 6.4.4 Object Tracking 6.5 Case Study 6.5.1 Objective 6.5.2 Dataset Preparation and Preprocessing 6.5.3 Network Architecture Design 6.5.4 Hyperparameter Selection 6.5.5 Inference Training 6.5.6 Results 6.6 Challenges with DL on Remote Sensing Data 6.7 Conclusion References Chapter 7: Improved Combinatorial Algorithms Test for Pairwise Testing Used for Testing Data Generation in Big Data Applications 7.1 Introduction 7.2 Literature Review 7.3 Combinatorial Testing 7.3.1 Positives of Combinational Testing 7.4 Applications of AI in Software Testing 7.5 Big Data and Big Data Applications 7.5.1 Significance of Applications 7.5.2 Models of the Pairwise Testing 7.5.3 Test Case Generation Engine 7.6 Input Domain Model 7.7 Failure of Pairwise Testing 7.8 Improved Algorithm 7.9 Limitations of This System 7.10 Conclusion References Chapter 8: Potential Applications of Artificial Intelligence in Medical Imaging and Health Care Industry 8.1 Introduction 8.1.1 Diagnostic Imaging 8.1.1.1 Biomedical Practices 8.1.2 Biochemical Procedures 8.2 Existing Structure and Design Issues 8.2.1 CAT Scanner 8.2.1.1 The Architecture 8.2.1.2 Design Issues 8.2.2 Robotic Surgeons 8.2.2.1 Design Issues 8.3 Implementation of AI-based CAT Scanner 8.4 Implementation of AI-based Robotic Surgeries 8.5 Applications 8.5.1 Digital AI Doctors 8.5.2 Creating Drugs 8.5.3 Mental Health 8.5.4 Medical Records 8.5.5 Early and Accurate Cancer Detection 8.5.6 AI in Pregnancy Management 8.5.7 AI in Genomics 8.6 Conclusion References Chapter 9: Virtual and Augmented Reality Mental Health Research and Applications 9.1 Introduction 9.2 Mental Health 9.3 Virtual Reality 9.3.1 Virtual Reality Clinical Research 9.3.2 Virtual Reality and Related Measures 9.3.2.1 Cognitive and Biological Measures 9.3.2.2 Cognitive, Behavioral, and Emotional Engagement 9.3.2.3 Head-tracking, Emotion, and Attention 9.4 Augmented Reality 9.4.1 Augmented Reality Clinical Research 9.5 Summary and Future Directions References Chapter 10: Solar Potential Estimation and Management Using IoT, Big Data, and Remote Sensing in a Cloud Computing Environment 10.1 Introduction 10.2 Literature Review 10.3 Study Area and Data Used 10.4 Methodology 10.5 Results and Discussions 10.6 Conclusion References Section III: Artificial Intelligence–Based Real-Time Applications Chapter 11: Object Detection under Hazy Environment for Real-Time Application 11.1 Introduction 11.2 Object Detection 11.3 Video Tracking 11.4 Applications 11.5 Related Work 11.6 Challenges 11.6.1 Bootstrapping 11.6.2 Camouflage 11.6.3 Illumination Variation 11.6.4 Foreground Aperture 11.6.5 Motion in Background 11.6.6 Occlusion 11.7 Conclusion 11.8 Future Scope References Chapter 12: Real-Time Road Monitoring Using Deep Learning Algorithm Deployed on IoT Devices 12.1 Introduction 12.2 Methodology 12.2.1 Pothole Detection 12.2.2 Tracking Potholes 12.2.3 Deployment in IoT 12.3 Results and Discussion 12.4 Conclusion Acknowledgments References Chapter 13: AI-Based Real-Time Application:: Pattern Recognition Automatic License Plate and Vehicle Number Detection Using Image Processing and Deep Learning (with OpenCV) 13.1 Introduction 13.2 Literature Survey 13.3 Various Applications 13.3.1 Pattern Recognition and Its Application 13.3.2 ANPR System and Its Application 13.4 Research Methods 13.4.1 Image Processing Using OpenCV 13.4.1.1 Data Collection Module 13.4.1.2 Pruning License Plate 13.4.1.2.1 Optical Character Recognition (OCR) 13.4.1.3 Edge Cases and Assumptions 13.4.1.4 Technologies and Their Definitions 13.4.2 ANPPR Using Deep Learning 13.5 Results 13.6 Conclusion References Chapter 14: Design of a Chess Agent Using Reinforcement Learning with SARSA Network 14.1 Introduction 14.2 Literature Survey 14.3 Applications of Reinforcement Learning 14.4 Architecture Design of the Proposed Chess Agent Using SARSA Network 14.4.1 Components of the SARSA Network 14.5 Implementation of the Chess Agent Using SARSA Network-Module Description 14.6 Results 14.7 Conclusion References Chapter 15: Moving Objects Detection in Video Processing:: A Graph Signal Processing Approach for Background Subtraction 15.1 Introduction 15.2 Active Background Subtraction 15.2.1 Notation 15.2.2 Background 15.2.3 Instance Segmentation 15.2.4 Background Estimation and Nodes Representation 15.2.5 Graph Construction 15.2.6 Blue-Noise Sampling for Unseen Videos 15.2.7 Semi-supervised Learning Algorithm 15.3 Experimental Framework 15.3.1 Dataset and Evaluation Measures 15.3.2 Experiments 15.4 Results and Discussions 15.5 Conclusion References Chapter 16: Application of Artificial Intelligence in Disaster Response 16.1 Introduction 16.2 Application of AI to Understand Natural Disasters 16.2.1 Applicaton of AI to Understand Earthquakes 16.2.2 Application of AI to Understand Floods 16.2.3 Application of AI to Understand Volcanoes 16.2.4 Application of AI to Understand Landslides 16.2.5 Application of AI to Understand Wildfires 16.3 Caution in Using AI for Disaster Response 16.4 Conclusion References Chapter 17: Use of Robotics in Surgery:: Current Trends, Challenges, and the Future 17.1 Introduction 17.2 Literature Review 17.3 Surgical Robots 17.3.1 Master–Slave Type 17.3.2 Handheld Robotic Forceps 17.4 Clinical Applications of Robotic Surgery 17.4.1 Robotic Prostate Surgery 17.4.2 Robotic Kidney Surgery 17.4.3 Robotic Gynecological Surgery 17.4.4 Robotic Gallbladder Surgery 17.4.5 Robotic Colorectal Surgery 17.5 Advantages of Robotics Surgery 17.6 Challenges of Robotic Surgery 17.7 Future of Robotics surgery 17.8 Conclusion References Chapter 18: Brain-Computer Interface:: State-of-Art, Challenges, and the Future 18.1 Introduction 18.2 BCI Invasive and Noninvasive Devices 18.2.1 Visual P300 and BCI Closed Loop 18.2.2 Machine Learning Algorithm 18.2.3 Brain–Computer Interface Speller 18.2.4 Event-Related Potentials (ERPs) 18.2.5 Movement Imagination 18.3 Quantum Brain Model 18.4 Specificity of the Architecture of Our Brain and the Brain Smart Activities 18.5 The Basic Mechanism of Turning Thoughts into Computer or Robotic Action 18.6 Brain Modularity 18.7 Soft Computing Algorithms 18.8 Molecular Machines 18.8.1 Synthetic Machines 18.8.2 Biological Molecular Machines 18.8.3 Nanorobots 18.8.4 Cell Repair Machines 18.8.5 Neuro-electronic Interfaces 18.8.6 Quantum Robot 18.9 Future Visions of the Brain Computer Interface 18.10 Recent Application of BCI Technology 18.11 Conclusion References Chapter 19: Artificial Intelligence:: Challenges and Future Applications 19.1 Introduction 19.2 Challenges of AI 19.2.1 Reengineering 19.2.2 Data Quality and Quantity 19.2.3 Integration of Data 19.2.4 Data Privacy and Security 19.2.5 Algorithms and Data 19.2.6 Software Malfunctioning 19.2.7 Algorithm Bias 19.2.8 Scarcity of Field Specialists 19.2.9 Lack of Investment 19.2.10 Building Trust 19.2.11 Implementation Strategies 19.2.12 Legal Issues 19.2.13 Higher Expectations 19.2.14 AI Can Be Dangerous 19.3 AI as a Job Creator 19.4 Next-Generation AI 19.5 Market Potential of AI 19.6 Summary References Index