دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Cherry Bhargava. Pardeep Kumar Sharma
سری:
ISBN (شابک) : 9780367559700, 9781003095910
ناشر: CRC Press
سال نشر: 2022
تعداد صفحات: [271]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Artificial Intelligence. Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی. مبانی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
متن مرجع جامع او مفاهیم اساسی هوش مصنوعی و کاربردهای آن را در یک جلد مورد بحث قرار می دهد. هوش مصنوعی: مبانی و کاربردها بحث مفصلی از جنبههای اساسی و اخلاقیات در زمینه هوش مصنوعی و کاربردهای آن در زمینههایی از جمله دستگاهها و سیستمهای الکترونیکی، الکترونیک مصرفی، مهندسی خودرو، ساخت، رباتیک و اتوماسیون، کشاورزی، بانکداری و تجزیه و تحلیل پیش بینی این متن با هدف دانشجویان ارشد و کارشناسی ارشد در رشته های مهندسی برق، مهندسی الکترونیک، مهندسی ساخت، داروسازی و بهداشت و درمان: در مورد پیشرفت های هوش مصنوعی و کاربردهای آن بحث می کند. تجزیه و تحلیل پیش بینی و تجزیه و تحلیل داده ها را با استفاده از هوش مصنوعی ارائه می دهد. الگوریتم ها و شبه کدهای حوزه های مختلف را پوشش می دهد. در مورد آخرین پیشرفت هوش مصنوعی در زمینه تشخیص عملی گفتار، ترجمه ماشینی، وسایل نقلیه خودران و روباتیک خانگی بحث می کند. کاربردهای هوش مصنوعی را در زمینه هایی از جمله داروسازی و مراقبت های بهداشتی، دستگاه ها و سیستم های الکترونیکی، تولید، لوازم الکترونیکی مصرفی و روباتیک پوشش می دهد.
his comprehensive reference text discusses the fundamental concepts of artificial intelligence and its applications in a single volume. Artificial Intelligence: Fundamentals and Applications presents a detailed discussion of basic aspects and ethics in the field of artificial intelligence and its applications in areas, including electronic devices and systems, consumer electronics, automobile engineering, manufacturing, robotics and automation, agriculture, banking, and predictive analysis. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, manufacturing engineering, pharmacy, and healthcare, this text: Discusses advances in artificial intelligence and its applications. Presents the predictive analysis and data analysis using artificial intelligence. Covers the algorithms and pseudo-codes for different domains. Discusses the latest development of artificial intelligence in the field of practical speech recognition, machine translation, autonomous vehicles, and household robotics. Covers the applications of artificial intelligence in fields, including pharmacy and healthcare, electronic devices and systems, manufacturing, consumer electronics, and robotics.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Artificial Intelligence and Nanotechnology: A Super Convergence 1.1 Introduction 1.2 Utility of Artificial Intelligence 1.2.1 AI in Scanning Probe Microscopy 1.2.2 Nanosystem Design 1.2.3 Nanoscale Simulation 1.2.4 Nanocomputing 1.3 Food Science 1.4 Nanobots in Medicine 1.5 Summary References Chapter 2 Artificial Intelligence in E-Commerce: A Business Process Analysis 2.1 Introduction 2.2 Artificial Intelligence 2.2.1 AI Mimicking Human Intelligence 2.2.2 AI Exceeding Human Intelligence 2.3 E-Commerce Business Processes and Artificial Intelligence 2.3.1 Marketing 2.3.1.1 Market Research 2.3.1.2 Market Stimulation 2.3.2 Transaction Processing 2.3.2.1 Terms Negotiation 2.3.2.2 Order Selection and Priority 2.3.2.3 Order Receipt 2.3.2.4 Order Billing/Payment Management 2.3.3 Service and Support 2.3.3.1 Order Scheduling/Fulfillment Delivery 2.3.3.2 Customer Service and Support 2.4 Concluding Remarks References Chapter 3 ABC of Digital Era with Special Reference to Banking Sector 3.1 Introduction 3.2 Artificial Intelligence in Banking Sector 3.3 ABC of Digital Era in Banking Sector 3.3.1 A as Artificial Intelligence 3.3.2 B as Big Tech 3.3.3 C as Core Banking and Cloud 3.4 Opportunities and Challenges in Banking Sector Due to Digitalization 3.4.1 Opportunities 3.4.2 Challenges 3.5 Artificial Intelligence Used by Four BIG Banks of India 3.5.1 State Bank of India 3.5.2 HDFC Bank 3.5.3 ICICI Bank 3.5.4 AXIS Bank 3.6 Conclusion References Chapter 4 Artificial Intelligence in Predictive Analysis of Insurance and Banking 4.1 Introduction 4.2 Predictive Analysis and Its Applications 4.2.1 Predictive Analysis of Stock Prices Using DCC GARCH Model in R 4.3 Genetic Algorithms 4.3.1 Genetic Algorithms in Portfolio Optimization 4.3.2 Genetic Algorithms in Bank Profit Maximization 4.4 Anomaly Detection 4.4.1 Anomaly Detection to Identify Credit Card Frauds using Python 4.4.1.1 Python Libraries 4.4.1.2 Anomaly Detection in Credit Card Data set 4.4.2 A Demonstration of Anomaly Detection in Ethereum Prices Using R 4.4.2.1 Ethereum 4.4.2.2 Tidy verse 4.4.2.3 Anomaly Detection 4.5 Conclusion References Chapter 5 Artificial Intelligence in Robotics and Automation 5.1 Introduction 5.2 History 5.3 Automation and Application Bots 5.4 Robots vs. Chatbots vs. Bots 5.4.1 Types of Bots 5.5 Natural Language Processing (NLP) 5.5.1 Natural Language Understanding (NLU) 5.5.2 Natural Language Generation 5.6 Robotics Process Automation (RPA) 5.6.1 Challenges in Implementation of RPA 5.7 Financial Impact of AI and Automation 5.8 Features of Automated Bots 5.9 Effect of AI and Automation 5.9.1 Human Resource 5.9.2 Drones and Self-Driving Cars 5.9.3 Education 5.9.4 Cybersecurity 5.9.5 Defense Forces 5.9.6 Home 5.9.7 Health Care 5.10 Challenges in implementing Automation 5.10.1 Business Case Issues 5.10.2 Analysis of Process 5.10.3 Post-Implementation Adoption 5.10.4 Choosing Right Vendor 5.11 Myths of Automated Bots 5.11.1 Robots are Humanoid 5.11.2 Automation Will Replace the Human Workforce 5.11.3 Accuracy 5.11.4 Expensive 5.11.5 Internal Environment of Organization 5.11.6 Robots Can Be Left Unattended 5.12 Platform Used for Implementation 5.12.1 Python 5.12.2 Tensor Flow 5.12.3 R 5.12.4 Scikit-Learn 5.12.5 Automation Anywhere 5.12.6 UiPath 5.13 Conclusion References Chapter 6 Artificial Intelligence: An Emerging Approach in Healthcare 6.1 Introduction 6.2 Scope & Relevance of Various Types of AI in Healthcare 6.3 AI’s Timeline in Healthcare 6.4 Implementation of AI Concepts in the Medical World 6.5 Current Researches that Contribute to the Advancement of AI 6.6 Key Issues & Challenges Ahead in AI 6.7 Conclusion References Chapter 7 Artificial Intelligence and Personalized Medicines: A Joint Narrative on Advancement in Medical Healthcare 7.1 Introduction 7.2 Need for Personalized Medicines 7.2.1 Contributors to Personalized Medicines 7.3 Application of AI in Healthcare for Development of Precision Medicines 7.4 In Intensive Care Unit (ICU) 7.4.1 In Intensive Care Unit (ICU)—To Predict the Fluid Requirement 7.4.2 To Solve Issues of Personalized Medicines 7.4.3 Revolutionizing Cloud of AI and Healthcare 7.5 Conclusion References Chapter 8 Nanotechnology and Artificial Intelligence for Precision Medicine in Oncology 8.1 Introduction 8.1.1 Fundamentals of Nanotechnology 8.2 Role of Nanotechnology in Medicine and Healthcare 8.2.1 Nanodrug Design by AI 8.2.2 Artificial Intelligence 8.2.2.1 AI in Medicine 8.2.3 Precision Medicine 8.2.3.1 Applications of Precision Medicine 8.2.4 Deep Learning 8.2.4.1 Application 8.2.4.2 Implementation of Deep Learning in Medicine 8.2.4.3 Convolutional Neural Networks 8.2.4.4 CNN in Precision Medicine 8.5 Conclusion References Chapter 9 Applications of Artificial Intelligence in Pharmaceutical and Drug Formulation 9.1 Introduction 9.2 Genetic Algorithm 9.3 Fuzzy Logic 9.4 Integrated Software 9.5 Applications of Artificial Intelligence in Pharmaceuticals 9.6 Recognition of Pattern and Modeling the Data of Analysis 9.7 Modeling the Response Surface 9.8 In Assessment of Controlled-Release and Immediate-Release Formulations 9.9 In Product Development 9.10 In Predictive Toxicology 9.11 Proteins’ Function and Structure Prediction 9.12 Pharmacokinetics 9.13 Conclusion References Chapter 10 Role of Artificial Intelligence for Diagnosing Tuberculosis 10.1 Introduction 10.1.1 History of TB 10.1.2 Global Impact of TB 10.1.3 TB: India’s Silent Epidemic 10.1.4 Classification of TB 10.2 Technological Interventions for Diagnosis of TB 10.2.1 Artificial Intelligence (AI) 10.2.2 AI Techniques 10.2.3 Role of AI in the Diagnosis of TB—Comparative Analysis 10.2.4 Limitations of Retrieved Literature 10.3 Conclusion References Chapter 11 Applications of Artificial Intelligence in Detection and Treatment of COVID-19 11.1 Introduction 11.2 Inception of Artificial Intelligence in Healthcare 11.2.1 Applications of AI in Healthcare 11.3 Artificial Intelligence in the Management of COVID-19 11.3.1 AI in Early Detection and Alert Systems 11.4 Role of AI in Tracking and Prediction of COVID-19 11.4.1 Machine Learning 11.4.2 BlueDot Technology 11.4.3 Spatial Analysis 11.4.4 Enter Telco Analytics 11.4.5 Social Media 11.5 AI in COVID-19 Diagnosis 11.5.1 Real-Time Reverse Transcriptase Polymerase Chain Reaction (rRT-PCR 11.5.2 Antibody Detection Test 11.5.3 Isothermal Nucleic Acid Amplification 11.5.4 CT Imaging Analysis 11.5.5 Detection Using the Sensors of Smartphones 11.6 AI in the Treatment of COVID-19 11.7 AI in Maintenance of the Affected Areas and Dashboard 11.7.1 Johns Hopkins University Centre for Systems Science and Engineering Dashboard (JHU CSSE) 11.7.2 The World Health Organization (WHO) Dashboard 11.8 AI in Social Safety/Surveillance/Prevention of COVID-19 11.9 Conclusion References Chapter 12 Internet of Things-Powered Artificial Intelligence Using Microsoft Azure Platform 12.1 Introduction 12.2 Computing Requirements 12.3 Real-Time Data Analysis 12.4 AIoT: Integration of IoT & AI on Microsoft Azure Platform 12.5 Steps to Write a Program in Rpi Computer 12.5.1 Working with Microsoft Azure 12.6 Application Areas of AIoT 12.7 Conclusion References Chapter 13 Load Balancing in Wireless Heterogeneous Network with Artificial Intelligence 13.1 Introduction 13.2 Different Types of Artificial Intelligence 13.2.1 Reactive Machines AI 13.2.2 Limited Memory AI 13.2.3 Theory of Mind AI 13.2.4 Self-Knowledge AI 13.2.5 Artificial Narrow Intelligence (ANI) 13.2.6 Artificial General Intelligence (AGI) 13.2.7 Artificial Strong Intelligence (ASI) 13.3 Advantages of Artificial Intelligence 13.4 Disadvantages of Artificial Intelligence 13.5 Artificial Intelligence: Methods and Applications 13.6 AI in Wireless Heterogeneous Networks (WHN) 13.7 Importance of Load Balancing In AI 13.6.1 Machine Learning in a Wireless Heterogeneous Network 13.6.2 Neural Network in a Wireless Heterogeneous Network 13.6.3 Fuzzy Logic for a Wireless Network 13.6.4 Genetic Algorithm 13.6.5 Particle Swarm Optimization (PSO) 13.6.6 Artificial Bee Colony (ABC) 13.6.7 Markov Models and Bayesian-Based Games 13.8 Conclusion References Chapter 14 Applications of Artificial Intelligence Techniques in the Power Systems 14.1 Introduction 14.1.1 Need of Artificial Intelligence in Power System 14.2 Types and Classification of Artificial Intelligent Techniques 14.2.1 Artificial Neural Network 14.2.1.1 Classification of Artificial Neural Network 14.2.1.2 Advantages and Disadvantages of Artificial Neural Network 14.2.1.3 Applications of ANN in Power System 14.2.2 Fuzzy Logic 14.2.2.1 Advantages and Disadvantages of Fuzzy Logic 14.2.2.2 Applications of Fuzzy Logic in Power System 14.2.3 Expert System 14.2.3.1 Advantages and Disadvantages of Expert System 14.2.3.2 Applications of Expert System in Power System 14.2.4 Genetic Algorithm (GA) 14.2.4.1 Advantages and Disadvantages of Genetic Algorithm 14.2.4.2 Applications of Genetic Algorithm in Power System 14.3 Comparison of AI Techniques in Power System 14.4 Applications of Artificial Intelligence in Power System 14.5 Conclusion References Chapter 15 Impact of Artificial Intelligence in the Aviation and Space Sector 15.1 Introduction 15.2 Artificial Intelligence in Airline Passenger Identification 15.2.1 Facial Recognition 15.3 Artificial Intelligence in Airline Baggage Identification 15.4 Artificial Intelligence in Airline Customer Satisfaction 15.5 Artificial Intelligence in Aircraft Safety and Maintenance 15.6 Artificial Intelligence Influence in Remote Sensing 15.6.1 Classification 15.6.2 Change Detection 15.6.3 Feature Extraction 15.6.4 In-Orbit Image Processing 15.7 Artificial Intelligence in Spacecraft Dynamics 15.8 Future Prospects 15.9 Conclusion References Chapter 16 Artificial Intelligence for Weather Forecasting 16.1 Introduction 16.2 Related Work 16.2.1 Multiple Linear Regression Model (MLR) 16.2.2 Artificial Neural Network (ANN) 16.2.3 Deep Learning Models 16.2.3.1 Recurrent Neural Networks 16.2.3.2 LSTM Network Long Short-Term Memory (LSTM) 16.3 Summary References Chapter 17 Molecular Mining: Applications in Pharmaceutical Sciences 17.1 Introduction 17.2 Why Molecular Mining? 17.3 Tools Involved in Data Mining 17.4 Data Science 17.5 Machine Learning 17.6 ML Techniques 17.7 Machine Learning Approaches for Mining of Molecules 17.8 Procedure 17.9 Conclusion References Index