دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Mary-Jo Diepeveen
سری:
ISBN (شابک) : 9781801814638, 1801814635
ناشر: Packt Publishing
سال نشر: 2022
تعداد صفحات: 348
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 Mb
در صورت تبدیل فایل کتاب Artificial Intelligence with Power BI: Take your data analytics skills to the next level by leveraging the AI capabilities in Power BI به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی با Power BI: مهارت های تجزیه و تحلیل داده های خود را با استفاده از قابلیت های هوش مصنوعی در Power BI به سطح بالاتری ببرید. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Contributors Table of Contents Preface Copyright and Credits Part 1: AI Fundamentals Chapter 1: Introducing AI in Power BI What do we expect from a data analyst? What is a data analyst? Connecting to data Visualizing data What is AI? Understanding the definition of AI Understanding machine learning Understanding deep learning Understanding supervised and unsupervised learning Understanding algorithms What is the data science process? Why should we use AI in Power BI? The problems with implementing AI Why AI in Power BI is the solution What are our options for AI in Power BI? Out-of-the-box options Creating your own models Summary Chapter 2: Exploring Data in Power BI Technical requirements Using the sample dataset on world happiness How to interpret this dataset Importing the world happiness dataset into Power BI What to look for in your data Understanding data quantity Understanding data quality Using data profiling tools Column quality Column distribution Column profile Using visuals to explore your data Line charts Bar charts Histograms Scatter plots matplotlib Summary Chapter 3: Data Preparation Fixing the structure of your data Working with structured data Fixing the structure of semi-structured data Fixing the structure when working with images Working with missing data How do you find missing data? What do you do with missing data? Mitigating bias How to find bias How to mitigate bias in your dataset Handling outliers Summary Part 2: Out-of-the-Box AI Features Chapter 4: Forecasting Time-Series Data Technical requirements Data requirements for forecasting Why use forecasting? Time-series data Using an example – tourism data Algorithms used for forecasting The benefit of using an out-of-the-box feature Understanding how forecasting is calculated in Power BI Optimizing forecasting accuracy in Power BI Using forecasting in Power BI Summary Further reading Chapter 5: Detecting Anomalies in Your Data Using Power BI Technical requirements Which data is suitable for anomaly detection? Why use anomaly detection? Data requirements for anomaly detection Understanding the logic behind anomaly detection The algorithms behind Microsoft's anomaly detection feature No need to label your data Fast and powerful analysis Using anomaly detection in Power BI Importing the sample dataset into Power BI Enabling anomaly detection in Power BI Summary Further reading Chapter 6: Using Natural Language to Explore Data with the Q&A Visual Technical requirements Understanding natural language processing Using natural language in programs Understanding natural language for data exploration Preparing data for natural language models Creating a Q&A visual in Power BI Adding a Q&A visual Using the Q&A visual Optimizing your Q&A visual Exploring the Q&A setup Improving the Q&A experience Using feedback to improve the model over time Summary Further reading Chapter 7: Using Cognitive Services Technical requirements Understanding Azure's Cognitive Services Creating a Cognitive Services resource Using Cognitive Services for LU Using Azure's Text Analytics Creating question answering from a knowledge base Using Cognitive Services for CV Understanding Azure's Computer Vision Using Azure's Custom Vision Using the Face service Summary Chapter 8: Integrating Natural Language Understanding with Power BI Technical requirements Using Language APIs in Power BI Desktop Using AI Insights Using Power Query Editor Visualizing insights from text in reports Visualizing text with a Word Cloud Summary Chapter 9: Integrating an Interactive Question and Answering App into Power BI Technical requirements Creating a question answering service Understanding the application of question answering Configuring a question answering service Creating an FAQ app with Power Apps Creating a new app with Power Apps Adding Power Automate to call the question answering service Connecting Power Automate to Power Apps Integrating the FAQ app with Power BI Improving the question answering model Summary Chapter 10: Getting Insights from Images with Computer Vision Technical requirements Getting insights with Computer Vision using AI Insights Using the Vision option of AI Insights Configuring Custom Vision Preparing the data for Custom Vision Training the model in Custom Vision Evaluating classification models Publishing your Custom Vision model Integrating Computer Vision or Custom Vision with Power BI Using visuals to show a reel of images in a report Storing data and ensuring it is anonymously accessible Improving the Custom Vision model Summary Part 3: Create Your Own Models Chapter 11: Using Automated Machine Learning with Azure and Power BI Technical requirements Understanding AutoML Understanding the ML process Improving the performance of an ML model When to use AutoML Creating an AutoML experiment in Azure ML Creating an Azure ML workspace and resources Configuring an AutoML run Deploying a model to an endpoint Integrating the model with Power BI Summary Chapter 12: Training a Model with Azure Machine Learning Technical requirements Understanding how to train a model Understanding the machine learning process Working with Azure ML Creating Azure ML assets Training a model with Azure ML Designer Configuring an Azure ML Designer pipeline Deploying a model for batch or real-time predictions Generating batch predictions Generating real-time predictions Integrating an endpoint with Power BI to generate predictions Summary Chapter 13: Responsible AI Understanding responsible AI Protecting privacy when using personal data Removing personally identifiable information Using differential privacy on personal data Creating transparent models Using algorithms that are transparent by design Explaining black-box models Creating fair models Identifying unfairness in models Mitigating unfairness in models Summary Index Other Books You May Enjoy