دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بیوفیزیک ویرایش: نویسندگان: Iori Sumida سری: IPEM–IOP Series in Physics and Engineering in Medicine and Biology ISBN (شابک) : 9780750333399, 9780750333382 ناشر: IOP Publishing سال نشر: 2022 تعداد صفحات: 205 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Artificial Intelligence in Radiation Therapy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی در پرتودرمانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
PRELIMS.pdf Preface Editor biography Iori Sumida List of contributors CH001.pdf Chapter 1 Introduction References CH002.pdf Chapter 2 Artificial intelligence and machine learning 2.1 Introduction 2.1.1 Foundations, similarities, and differences 2.1.2 Connection to decision making 2.2 Overview of learning methods 2.2.1 Supervised learning 2.2.2 Unsupervised learning 2.2.3 Semi-supervised learning 2.2.4 Reinforcement learning 2.3 Common algorithms 2.3.1 Gaussian mixture models 2.3.2 Regression and classification algorithms 2.3.3 Decision-tree algorithms 2.3.4 Optimal trees 2.3.5 Neural networks 2.4 Summary 2.5 Acknowledgement References CH003.pdf Chapter 3 Overview of AI applications in radiation therapy 3.1 Opportunities of AI applications in modern radiotherapy workflow 3.2 Summary References CH004.pdf Chapter 4 Introduction to CT/MR simulation in radiotherapy 4.1 Simulation procedure in the radiation therapy process 4.2 Immobilization device for radiation therapy 4.2.1 Systematic error and random error 4.2.2 Reproducibility of patient setup 4.3 Image quality and acquisition time 4.4 Image deformation 4.4.1 Deformable image registration 4.4.2 AI driven image deformation 4.4.3 Practical implementation of AI References CH005.pdf Chapter 5 Organ delineation 5.1 Introduction to organ delineation in radiotherapy 5.1.1 Organ delineation in the radiation therapy process 5.1.2 Impact of delineation accuracies 5.2 Organ delineation methodologies 5.2.1 Automated image segmentation techniques and deep learning applications 5.3 Implementation for clinical diseases: targets and normal structures 5.3.1 Head and neck and brain structures 5.3.2 Thoracic and gastrointestinal structures 5.3.3 Pelvic structures 5.4 Best practice implementation of AI driven delineation 5.5 Future developments and outlook References CH006.pdf Chapter 6 Automated treatment planning 6.1 Goals and motivations of treatment planning 6.2 Automated treatment planning overview 6.3 Knowledge-based planning 6.4 Protocol-based planning 6.5 Multicriteria optimization References CH007.pdf Chapter 7 Artificial intelligence in adaptive radiation therapy 7.1 Introduction 7.1.1 Advantages of ART 7.1.2 Types of ART, current status and challenges 7.1.3 Overview of current workflow of ART and current challenges 7.1.4 AI and AI-assisted technologies for ART 7.2 The role of AI in ART workflow 7.2.1 Deep learning for improving in-room image quality and generating pseudo-CT 7.2.2 Deep learning for deformable image registration and auto-segmentation 7.2.3 Machine learning for decision support on daily adaptation 7.2.4 Machine learning for online re-optimization 7.2.5 AI for quality assurance, verification, and error detection 7.2.6 AI for physics plan check 7.2.7 Considerations for education and training 7.3 Existing AI solutions for ART 7.3.1 Ethos online ART platform from Varian medical 7.3.2 Machine learning solutions from RaySearch Laboratories 7.3.3 PreciseART offline dose monitoring platform from Accuray 7.4 Summary References CH008.pdf Chapter 8 AI-augmented image guidance for radiation therapy delivery 8.1 Introduction to image guidance for radiotherapy 8.1.1 Background 8.1.2 Current image guidance solutions 8.1.3 AI tools and networks for image guidance 8.2 Image guidance for interfraction motion 8.2.1 Patients setup based on orthogonal kV images 8.2.2 Pretreatment daily cone-beam CT imaging 8.3 Image guidance for intrafraction motion 8.3.1 Real-time monitoring methods 8.3.2 Real-time needle and fiducial segmentation 8.4 Real-time 3D IGRT on standard linac 8.5 Summary References CH009.pdf Chapter 9 AI for quality management in radiation therapy 9.1 QA versus QC 9.2 AI for chart review 9.3 AI for patient specific QA and gamma passing rate prediction 9.4 AI for dosimetric and mechanical QA for linear accelerators 9.4.1 Output factor and monitor unit 9.4.2 Linac mechanical error detection 9.5 Summary References CH010.pdf Chapter 10 Data-driven approaches in radiotherapy outcome modeling 10.1 Introduction 10.2 Analytical dose–response models and extensions 10.2.1 Linear-quadratic model and equivalent dose 10.2.2 Tumor control probability and normal tissue complication probability 10.3 Overview of machine learning models 10.3.1 Endpoint prediction: regression and classification 10.3.2 Inclusion of imaging data 10.3.3 Survival prediction models 10.3.4 Performance evaluation metrics 10.4 Practical considerations—building models for radiation oncology 10.4.1 Input data 10.4.2 Feature importance and selection 10.4.3 Tuning hyperparameters 10.4.4 Resampling: cross-validation and bootstrapping 10.4.5 Nested cross-validation and final model selection 10.4.6 Model validation 10.5 Including dose distributions into data-driven outcome models 10.5.1 Voxel-based analysis 10.6 Model reporting: TRIPOD and study analysis plans 10.6.1 Study analysis plans 10.7 Conclusion and future challenges References CH011.pdf Chapter 11 Challenges in artificial intelligence development of radiotherapy 11.1 Radiomics: past, current, and future 11.1.1 Multiparametric radiomics 11.1.2 Multi-radiomics 11.1.3 Artificial intelligence (AI)-empowered radiomics 11.1.4 Precision radiotherapy 11.2 AI and multi-radiomics as a hybrid way for AI development 11.3 Ethics and regulations for artificial intelligence using biomedical informatics 11.4 Heterogeneous biomedical data management 11.5 Human harms due to AI References