دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Adam Bohr (editor). Kaveh Memarzadeh (editor)
سری:
ISBN (شابک) : 0128184388, 9780128184387
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 376
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Artificial Intelligence in Healthcare به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی در بهداشت و درمان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هوش مصنوعی (AI) در مراقبت های بهداشتی بیش از یک مقدمه جامع برای هوش مصنوعی به عنوان ابزاری در تولید و تجزیه و تحلیل داده های مراقبت های بهداشتی است. این کتاب به دو بخش تقسیم میشود که بخش اول چالشهای فعلی مراقبتهای بهداشتی و ظهور هوش مصنوعی در این عرصه را توضیح میدهد. ده فصل بعدی توسط متخصصان هر حوزه نوشته شده است و کل اکوسیستم مراقبت های بهداشتی را پوشش می دهد. ابتدا، کاربردهای هوش مصنوعی در طراحی دارو و توسعه دارو و سپس کاربردهای آن در زمینه تشخیص سرطان، درمان و تصویربرداری پزشکی ارائه شده است. پس از آن، استفاده از هوش مصنوعی در دستگاه های پزشکی و جراحی و همچنین نظارت از راه دور بیمار تحت پوشش قرار می گیرد. در نهایت، کتاب به موضوعات امنیت، حریم خصوصی، به اشتراک گذاری اطلاعات، بیمه های درمانی و جنبه های قانونی هوش مصنوعی در مراقبت های بهداشتی می پردازد.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare.
Artificial Intelligence in Healthcare Copyright Endorsement Contents List of contributors About the editors Biographies Preface About this book Intended audience How is this book organized Introduction The promise of an intelligent machine Current applications and challenges in healthcare 1 Current healthcare, big data, and machine learning 1.1 Current healthcare practice 1.1.1 The rising need for technology 1.1.2 New models in healthcare 1.2 Value-based treatments and healthcare services 1.2.1 Value-based healthcare 1.2.2 Increasing health outcomes 1.2.3 Patient-centered care (the patient will see you now) 1.2.4 Personalized medicine 1.3 Increasing data volumes in healthcare 1.3.1 Big data and data accumulation 1.3.2 Data generation sources 1.3.3 Big data types 1.4 Analytics of healthcare data (machine learning and deep learning) 1.4.1 Machine learning 1.4.2 Deep learning 1.5 Conclusions/summary References 2 The rise of artificial intelligence in healthcare applications 2.1 The new age of healthcare 2.1.1 Technological advancements 2.1.2 Artificial intelligence applications in healthcare 2.2 Precision medicine 2.2.1 Genetics-based solutions 2.2.2 Drug discovery and development 2.2.2.1 Drug property and activity prediction 2.2.2.2 De novo design through deep learning 2.2.2.3 Drug–target interactions 2.3 Artificial intelligence and medical visualization 2.3.1 Machine vision for diagnosis and surgery 2.3.1.1 Computer vision for diagnosis and surgery 2.3.2 Deep learning and medical image recognition 2.3.3 Augmented reality and virtual reality in the healthcare space 2.3.3.1 Education and exploration 2.3.3.2 Patient experience 2.4 Intelligent personal health records 2.4.1 Health monitoring and wearables 2.4.2 Natural language processing 2.4.3 Integration of personal records 2.5 Robotics and artificial intelligence-powered devices 2.5.1 Minimally invasive surgery 2.5.2 Neuroprosthetics 2.6 Ambient assisted living 2.6.1 Smart home 2.6.2 Assistive robots 2.6.3 Cognitive assistants 2.6.4 Social and emotional stimulation 2.7 The artificial intelligence can see you now 2.7.1 Artificial intelligence in the near and the remote 2.7.2 Success factors for artificial intelligence in healthcare 2.7.2.1 Assessment of condition 2.7.2.2 Managing complications 2.7.2.3 Patient-care assistance 2.7.2.4 Medical research 2.7.3 The digital primary physician 2.7.3.1 Artificial intelligence prequalification (triage) 2.7.3.2 Remote digital visits 2.7.3.3 The future of primary care References 3 Drug discovery and molecular modeling using artificial intelligence 3.1 Introduction. The scope of artificial intelligence in drug discovery 3.1.1 Areas in which machine learning techniques are applied in biotechnology 3.2 Various types of machine learning in artificial intelligence 3.2.1 Artificial neural networks as tools in drug discovery 3.2.2 Architecture of artificial neural network for drug discovery applications 3.2.3 Artificial neural network methods for structure prediction in proteins from their sequence 3.2.4 Artificial neural network methods for spectroscopy in biomedicine 3.3 Molecular modeling and databases in artificial intelligence for drug molecules 3.3.1 Databases for the training sets in drug discovery 3.3.2 Database mining 3.4 Computational mechanics ML methods in molecular modeling 3.4.1 Molecular dynamics simulation for drug development 3.4.2 Computations with quantum mechanical techniques for drug development 3.5 Drug characterization using isopotential surfaces 3.6 Drug design for neuroreceptors using artificial neural network techniques 3.7 Specific use of deep learning in drug design 3.7.1 Other applications of machine learning in drug development 3.8 Possible future artificial intelligence development in drug design and development References 4 Applications of artificial intelligence in drug delivery and pharmaceutical development 4.1 The evolving pharmaceutical field 4.2 Drug delivery and nanotechnology 4.3 Quality-by-design R&D 4.4 Artificial intelligence in drug delivery modeling 4.5 Artificial intelligence application in pharmaceutical product R&D 4.5.1 Artificial intelligence application in prototyping and early development: an example scenario 4.5.2 Artificial intelligence in late-stage development: an example scenario 4.5.2.1 Artificial intelligence in manufacturing development and control 4.6 Landscape of AI implementation in the drug delivery industry 4.7 Conclusion: the way forward References 5 Cancer diagnostics and treatment decisions using artificial intelligence 5.1 Background 5.2 Artificial intelligence, machine learning, and deep learning in cancer 5.3 Artificial intelligence to determine cancer susceptibility 5.4 Artificial intelligence for enhanced cancer diagnosis and staging 5.5 Artificial intelligence to predict cancer treatment response 5.6 Artificial intelligence to predict cancer recurrence and survival 5.7 Artificial intelligence for personalized cancer pharmacotherapy 5.8 How will artificial intelligence affect ethical practices and patients? 5.9 Concluding remarks References 6 Artificial intelligence for medical imaging 6.1 Introduction 6.2 Outputs of artificial intelligence in radiology/medical imaging 6.2.1 Preprocessing 6.2.2 Segmentation 6.2.3 Object detection 6.3 Using artificial intelligence in radiology and overcoming its hurdles 6.3.1 Not enough training data (data augmentation) 6.3.2 Unbalanced training data (data weighing) 6.3.3 Not representative training data (transfer learning, domain adaptation) 6.3.3.1 Transfer learning 6.3.3.2 Domain adaptation 6.3.3.2.1 Black box—algorithm explanation 6.3.3.2.2 Implementation/integration 6.4 X-rays and artificial intelligence in medical imaging—case 1 (Zebra medical vision) 6.4.1 X-rays and their role in medicine 6.4.2 X-ray discovery 6.4.3 Chest X-rays 6.4.4 RadBot-CXR—clinical findings using deep learning 6.4.5 Detecting osteoporosis using artificial intelligence 6.5 Ultrasound and artificial intelligence in medical imaging—case 2 (Butterfly iQ) 6.5.1 Ultrasound and its role in medicine 6.5.2 The Butterfly iQ 6.6 Application of artificial intelligence in medical imaging—case 3 (Arterys) 6.7 Perspectives References 7 Medical devices and artificial intelligence 7.1 Introduction 7.2 The development of artificial intelligence in medical devices 7.2.1 Activity tracking devices 7.2.2 Implants, bionics and robotics devices 7.3 Limitations of artificial intelligence in medical devices 7.4 The future frontiers of artificial intelligence in medical devices References 8 Artificial intelligence assisted surgery 8.1 Introduction 8.2 Preoperative 8.2.1 Preoperative risk assessment 8.2.2 Preoperative diagnosis 8.2.3 Preoperative staging 8.3 Intraoperative 8.3.1 Autonomous surgery 8.3.2 Computer vision 8.4 Postoperative 8.4.1 Detecting complications 8.4.2 Training and certification of surgeons 8.5 Conclusion References Further reading 9 Remote patient monitoring using artificial intelligence 9.1 Introduction to remote patient monitoring 9.2 Deploying patient monitoring 9.2.1 Patient monitoring in healthcare today 9.2.2 Using remote patient monitoring to improve clinical outcomes 9.3 The role of artificial intelligence in remote patient monitoring 9.3.1 Harnessing the power of consumer technology 9.3.2 Sensors, smartphones, apps, and devices 9.3.3 Natural language processing 9.3.4 Natural language processing technology applications in healthcare 9.3.5 Clinical decision support 9.3.6 Ambient assisted living 9.4 Diabetes prediction and monitoring using artificial intelligence 9.4.1 DiaBits 9.4.2 Other diabetes remote monitoring apps and devices 9.5 Cardiac monitoring using artificial intelligence 9.5.1 Virtual application of artificial intelligence in cardiology 9.5.1.1 Imaging interpretation 9.5.1.2 Clinical decision support systems 9.5.1.3 Artificial intelligence in virtual reality, augmented reality, and voice powered virtual assistants 9.5.1.4 “BIG DATA” for predictive analysis 9.6 Neural applications of artificial intelligence and remote patient monitoring 9.6.1 Dementia 9.6.1.1 Artificial intelligence in dementia monitoring 9.6.1.2 Smart homes to support dementia patients 9.6.2 Migraine 9.6.2.1 Migraine Buddy 9.6.2.2 Manage My Pain Pro 9.7 Conclusions References 10 Security, privacy, and information-sharing aspects of healthcare artificial intelligence 10.1 Introduction to digital security and privacy 10.2 Security and privacy concerns in healthcare artificial intelligence 10.2.1 Defining privacy 10.2.2 Privacy and data sharing 10.2.2.1 Toward data interoperability in healthcare 10.2.3 Safety and security in an era of emerging technologies in healthcare 10.2.4 Measures to protect sensitive data in healthcare 10.2.4.1 Traditional techniques 10.2.4.2 Emerging techniques 10.3 Artificial intelligence’s risks and opportunities for data privacy 10.3.1 Artificial intelligence’s risks for data privacy 10.3.1.1 Susceptibility to data privacy and integrity attacks 10.3.1.1.1 Reidentification of patients using artificial intelligence 10.3.1.1.2 Data integrity and bias 10.3.1.1.3 Inadvertent disclosure 10.3.1.2 More limited level of control over data ownership and handling 10.3.1.3 Less intuitive understanding of one’s data privacy 10.3.1.4 Use of sensitive health data outside of healthcare 10.3.1.5 Privacy externalities 10.3.2 Artificial intelligence’s opportunities for data privacy 10.3.2.1 Improving data utility 10.3.2.2 Better attribution of privacy violations 10.3.2.3 Improving physician productivity and data sharing 10.4 Addressing threats to health systems and data in the artificial intelligence age 10.4.1 Addressing cyberattacks and data breaches in healthcare 10.4.2 Government regulation of security and privacy in healthcare 10.5 Defining optimal responses to security, privacy, and information-sharing challenges in healthcare artificial intelligence 10.5.1 Governments 10.5.1.1 Regulation 10.5.1.2 Oversight and enforcement 10.5.1.3 National strategy development 10.5.2 Innovators 10.5.2.1 Build sustainable solutions 10.5.2.2 Adopting privacy principles 10.5.3 Developing privacy-centered solutions 10.5.4 Providers 10.5.4.1 Internal review 10.5.4.2 Governance 10.5.4.3 Education and training 10.5.4.4 Communication 10.5.5 Patients 10.5.5.1 Data ownership 10.5.5.2 Consent granting 10.6 Conclusions Acknowledgements References 11 The impact of artificial intelligence on healthcare insurances 11.1 Overview of the global health insurance industry 11.2 Key challenges facing the health insurance industry 11.2.1 Cost of healthcare 11.2.2 Increased expectations of customers 11.2.3 Regulatory overhead 11.3 The application of artificial intelligence in the health insurance industry 11.3.1 Overview and history of artificial intelligence 11.3.2 Artificial intelligence in health insurance 11.3.2.1 Improving customer experience 11.3.2.2 Reducing fraud 11.3.2.3 Improving back-office efficiency and reducing cost 11.3.2.4 Reducing risk and optimizing premiums 11.3.2.5 Creating new business opportunities 11.4 Case studies 11.4.1 Successes 11.4.2 Failures 11.5 Moral, ethical, and regulatory concerns regarding the use of artificial intelligence 11.5.1 Regulatory challenges 11.5.2 Ethical challenges 11.6 The limitations of artificial intelligence 11.6.1 Lack of talent 11.6.2 Lack of data or poor data quality 11.6.3 Artificial intelligence accuracy, bias, and relevance 11.6.4 Artificial intelligence as part of the decision process 11.6.5 Process control 11.7 The future of artificial intelligence in the health insurance industry References 12 Ethical and legal challenges of artificial intelligence-driven healthcare 12.1 Understanding “artificial intelligence” 12.2 Trends and strategies 12.2.1 United States 12.2.2 Europe 12.3 Ethical challenges 12.3.1 Informed consent to use 12.3.2 Safety and transparency 12.3.3 Algorithmic fairness and biases 12.3.4 Data privacy 12.4 Legal challenges 12.4.1 Safety and effectiveness 12.4.1.1 United States 12.4.1.1.1 Medical devices 12.4.1.1.2 Medical and certain decision support software 12.4.1.1.2.1 Software functions under Section 520(o)(1)(A)–(D) of the FDCA 12.4.1.1.2.2 Software functions under Section 520(o)(1)(E) of the FDCA 12.4.1.1.3 Other FDA initiatives 12.4.1.2 Europe 12.4.1.2.1 Medical devices and new legal developments 12.4.1.2.2 MDR 12.4.2 Liability 12.4.2.1 United States 12.4.2.2 Europe 12.4.3 Data protection and privacy 12.4.3.1 United States 12.4.3.2 Europe 12.4.4 Cybersecurity 12.4.5 Intellectual property law 12.5 Conclusion Acknowledgements References Concluding remarks Index