دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Nathan Brown (editor)
سری: Drug discovery series
ISBN (شابک) : 9781839160547, 1788015479
ناشر: Royal Society of Chemistry
سال نشر: 2021
تعداد صفحات: 405
[416]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Artificial intelligence in drug discovery به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی در کشف مواد مخدر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
به دنبال پیشرفت های قابل توجه در یادگیری عمیق و زمینه های مرتبط، علاقه به هوش مصنوعی (AI) به سرعت رشد کرده است. به طور خاص، استفاده از هوش مصنوعی در کشف دارو فرصتی برای مقابله با چالشهایی فراهم میکند که قبلاً حل آنها دشوار بود، مانند پیشبینی خواص، طراحی مولکولها و بهینهسازی مسیرهای مصنوعی. هدف هوش مصنوعی در کشف دارو، معرفی خواننده با ابزارها و تکنیکهای یادگیری ماشینی و هوش مصنوعی و ترسیم چالشهای خاص از جمله طراحی ساختارهای مولکولی جدید، برنامهریزی سنتز و شبیهسازی است. با ارائه انبوهی از اطلاعات از کارشناسان برجسته در این زمینه، این کتاب برای دانشجویان، فارغ التحصیلان و محققان مستقر در صنعت و دانشگاه ایده آل است.
Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
Title Copyright Contents Section 1: Introduction to Artificial Intelligence and Chemistry Chapter 1 Introduction 1.1 Introduction Section 2: Chemical Data Chapter 2 The History of Artificial Intelligence and Chemistry 2.1 Artificial Intelligence in History 2.2 The Winters of Artificial Intelligence 2.3 Chemistry Finding Artificial Intelligence 2.4 Synthesis Planning 2.5 Predictive Modelling of Properties 2.6 Summary References Chapter 3 Chemical Topic Modeling – An Unsupervised Approach Originating from Text-mining to Organize Chemical Data 3.1 Introduction 3.2 Topic Modeling and LDA 3.2.1 The Mathematical Framework of LDA 3.2.2 Advanced Topic Modeling Extensions 3.2.3 Topic Modeling and Its Relation to Other Machine Learning Methods 3.2.4 Topic Modeling in Different Scientific Disciplines 3.3 Chemical Topic Modeling 3.3.1 Feature Representation for Chemical Topic Modeling 3.3.2 Creating and Interpreting a Chemical Topic Model 3.3.3 Evaluation of a Chemical Topic Model 3.4 Exploring Large Data Sets with Chemical Topic Modeling 3.4.1 Hierarchical Topics 3.5 Combining Text and Chemical Information 3.6 Conclusions, Limitations and Future Work References Chapter 4 Deep Learning and Chemical Data 4.1 Introduction 4.2 Background 4.2.1 Deep Learning 4.2.2 Evaluation Methods 4.2.3 Natural-language Processing 4.3 Case Study 1: Spectroscopic Analysis 4.3.1 Background 4.3.2 Worked NMR Example 4.4 Case Study 2: Natural Language Processing Experiments 4.4.1 Introduction 4.4.2 Chemical Entity Mentions in Patents 4.4.3 Deep Learning vs. Feature Engineering for Relationship Extraction 4.5 Conclusions and Future Work References Section 3: Ligand-based Predictive Modelling Chapter 5 Concepts and Applications of Conformal Prediction in Computational Drug Discovery 5.1 Introduction 5.2 Conformal Prediction Modalities Commonly Used in Computer-aided Drug Design 5.2.1 Inductive Conformal Prediction (ICP) 5.3 Handling Imbalanced Datasets: Mondrian Conformal Prediction (MCP) 5.3.1 ICP for Regression 5.3.2 Conformal Prediction Using All Labelled Data for Learning 5.4 Conformal Prediction Methods for Deep Learning 5.5 Open-source Implementations of Conformal Prediction 5.6 Current Limitations of Conformal Prediction and Future Perspectives Conflicts of Interest References Chapter 6 Non-applicability Domain. The Benefits of Defining “I Don't Know” in Artificial Intelligence 6.1 Introduction 6.2 Predictive Models 6.3 Defining NotAvailable Predictions 6.4 All Leave One Out Models 6.5 Benefits of Defining NotAvailable Predictions 6.6 Simulation Study 6.6.1 Design of the Experiment 6.6.2 Results of the Experiment 6.6.3 Discussion 6.7 Questions and Criticism 6.7.1 Question 1 6.7.2 Question 2 6.7.3 Question 3 6.7.4 Question 4 6.7.5 Question 5 6.7.6 Question 6 6.7.7 Question 7 6.7.8 Question 8 6.8 Final Remarks Abbreviations References Section 4: Structure-based Predictive Modelling Chapter 7 Predicting Protein-ligand Binding Affinities 7.1 Introduction 7.2 A Brief Background on Classical Methodologies 7.2.1 Potential-based 7.2.2 Simulation-based 7.2.3 Data-based 7.3 Modern Machine-learning Scoring Functions 7.3.1 Domain Applicability 7.3.2 Descriptors 7.3.3 Models 7.3.4 Interpretability 7.3.5 Implementation and Availability 7.4 Available Data and Evaluation 7.4.1 Scope and Databases 7.4.2 Evaluation 7.5 Discussion References Chapter 8 Virtual Screening with Convolutional Neural Networks 8.1 Introduction 8.1.1 Virtual Screening 8.1.2 Traditional Approaches to Virtual Screening 8.1.3 Machine Learning Scoring Functions 8.1.4 Rationale for Deep Learning Approaches 8.2 Virtual Screening 8.2.1 Data Sets for Structure-based Virtual Screening 8.2.2 Appropriate Train/Test Splits for SBVS 8.2.3 Evaluation Measures 8.3 Convolutional Neural Networks 8.3.1 CNNs: A Primer 8.3.2 ImageNet 8.3.3 Modern CNN Architectures 8.4 CNN Applications for Virtual Screening 8.4.1 Input Format for CNN Structure-based Virtual Screening 8.4.2 Outline and Performance of CNN-based Methods 8.5 Other Closely Related Tasks 8.5.1 Pose Prediction 8.5.2 Binding Affinity Prediction 8.6 Visualisation 8.7 Outlook References Chapter 9 Machine Learning in the Area of Molecular Dynamics Simulations 9.1 Introduction 9.1.1 Basics of Molecular Dynamics 9.1.2 Machine-learning Applications 9.1.3 MD and ML 9.2 Using Machine Learning to Improve Force Fields 9.2.1 Multi-variate Linear Regression 9.2.2 Bayesian Inference 9.2.3 Genetic Algorithm 9.2.4 Random Forest Regression 9.2.5 Artificial Neural Network 9.2.6 Remarks 9.3 Improving Sampling in MD Simulations 9.3.1 General Sampling Enhancement 9.3.2 Estimating the Biasing Potential for a Given Reaction Coordinate 9.3.3 Estimating Optimal Collective Variables 9.4 Learning from MD Trajectories 9.4.1 Application to Clustering 9.4.2 Application to Property Prediction 9.4.3 Application to Kinetic Models 9.5 Perspectives and Challenges 9.5.1 Datasets on Dynamics Information 9.5.2 Benchmarking 9.5.3 Open-source Implementation 9.5.4 Concluding Remarks References Section 5: Molecular Design Chapter 10 Compound Design Using Generative Neural Networks 10.1 Introduction 10.2 Principles of Deep Learning 10.3 De Novo Design via Deep Learning 10.3.1 Molecular Representation 10.3.2 Recurrent Neural Networks 10.3.3 Autoencoder Variants 10.3.4 Graph-based Neural Networks 10.4 Property Prediction through Deep Learning 10.5 Conclusions and Outlook References Chapter 11 Junction Tree Variational Autoencoder for Molecular Graph Generation 11.1 Introduction 11.2 Neural Generation of Molecular Graphs 11.2.1 Junction Tree 11.2.2 Tree and Graph Encoder 11.2.3 Junction Tree Decoder 11.2.4 Graph Decoder 11.3 Application to Molecular Design 11.3.1 Molecular Generative Model 11.3.2 Molecule-to-Molecule Translation 11.4 Experiments 11.4.1 Molecular Variational Autoencoder 11.4.2 Molecular Translation 11.5 Conclusion References Chapter 12 AI via Matched Molecular Pair Analysis 12.1 Introduction 12.2 Essential Features of Artificial Intelligence 12.3 Matched Molecular Pair Analysis 12.3.1 Generic Issues in Identifying Matched Molecular Pairs 12.3.2 Automation 12.3.3 Other Matched Pair Technologies 12.3.4 Fuzzy Matched Pairs 12.3.5 Matched Molecular Series 12.3.6 MMPA Enhanced by Protein Structural Data 12.4 Future Developments 12.5 Summary References Chapter 13 Molecular De Novo Design Through Deep Generative Models 13.1 Introduction 13.2 Sequence-based Methods for De Novo Generation of Small Molecules 13.2.1 Embeddings and Tokenization 13.2.2 Recurrent Neural Networks 13.2.3 Sampling SMILES from RNNs 13.2.4 Properties and Synthesizability 13.2.5 Advanced Neural Architectures 13.3 Graph-based De Novo Structure Generation 13.4 Benchmarking Generative Molecular De Novo Design Models 13.4.1 Benchmarking Explorative Models 13.4.2 Benchmarking Exploitative Models 13.4.3 Benchmarking Models During Training 13.4.4 Comparing Model Architectures 13.5 Conclusions References Chapter 14 Active Learning for Drug Discovery and Automated Data Curation 14.1 Introduction 14.2 Active Learning for Drug Discovery, Chemistry, and Material Science 14.2.1 Exploitation vs. Exploration 14.2.2 Balancing Different Objectives 14.2.3 When to Stop – Say When! 14.2.4 Batch Selection 14.2.5 Benchmarking the Learning 14.3 Active Learning for Data Curation 14.3.1 Reduced Redundancy and Balanced Data 14.3.2 Reactive Learning 14.4 Conclusions References Section 6: Synthesis Planning Chapter 15 Data-driven Prediction of Organic Reaction Outcomes 15.1 Introduction 15.1.1 The Role of Reaction Prediction 15.1.2 Non-data Driven Heuristic Systems 15.2 Data-driven Approaches 15.2.1 Focused Analyses of Specific Reaction Classes 15.2.2 At the Mechanistic Level 15.2.3 Via Reaction Templates 15.2.4 Without Reaction Templates: Graphs 15.2.5 Without Reaction Templates: Sequences 15.3 Conclusion 15.3.1 Data Availability 15.3.2 Evaluation 15.3.3 Breadth versus Accuracy 15.4 Model Types 15.5 Conclusion References Section 7: Future Outlook Chapter 16 ChemOS: An Orchestration Software to Democratize Autonomous Discovery 16.1 Introduction 16.2 Automated Approaches to Scientific Discovery 16.2.1 Algorithmic Strategies to Screen the Parameter Space 16.2.2 Examples of Automation in Key Industrial Sectors and Academia 16.2.3 Limitations of Automated Approaches 16.3 Autonomous Approaches to Scientific Discovery 16.3.1 Algorithmic Strategies to Experiment Planning 16.3.2 Roadmap for Deploying and Orchestrating the Self-driving Laboratories 16.3.3 Early Realization of Self-driving Laboratories 16.4 ChemOS to Orchestrate Next-generation Experimentation 16.4.1 AI-aided Experiment Planning 16.4.2 Intuitive Human–Robot Interactions 16.4.3 Online Analysis of Experimental Results 16.4.4 Databases Management and Storage Solutions 16.4.5 Connection to Automated Solutions 16.5 Successful Applications of ChemOS to Scientific Challenges 16.5.1 Calibration of an Automated Setup for Real-time Reaction Monitoring 16.5.2 Discovery of Conductive Thin-film Materials 16.5.3 Formulation of Polymer Blends for Photo-stable Solar Cells 16.6 Application of ChemOS to Drug Discovery 16.7 Conclusion and Outlook References Section 8: Summary and Outlook Chapter 17 Summary and Outlook 17.1 Introduction 17.2 Challenges 17.2.1 Data 17.2.2 Compute 17.2.3 Culture 17.3 Summary Subject Index