ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Artificial Intelligence in Data Mining: Theories and Applications

دانلود کتاب هوش مصنوعی در داده کاوی: نظریه ها و کاربردها

Artificial Intelligence in Data Mining: Theories and Applications

مشخصات کتاب

Artificial Intelligence in Data Mining: Theories and Applications

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9780128206010 
ناشر: Elsevier; Academic Press 
سال نشر: 2021 
تعداد صفحات: [271] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 4 Mb 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Artificial Intelligence in Data Mining: Theories and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب هوش مصنوعی در داده کاوی: نظریه ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب هوش مصنوعی در داده کاوی: نظریه ها و کاربردها

هوش مصنوعی در داده کاوی: تئوری ها و کاربردها مقدمه ای جامع بر تئوری های داده کاوی، تکنیک های مرتبط با هوش مصنوعی و بسیاری از برنامه های کاربردی در دنیای واقعی آن ها ارائه می دهد. این کتاب توسط مهندسان مجرب برای مهندسان، مهندسان زیست پزشکی و محققان در شبکه های عصبی و همچنین دانشمندان کامپیوتر با علاقه به این منطقه نوشته شده است. پوششی از مبانی هوش مصنوعی که در داده کاوی اعمال می شود، از جمله هوش محاسباتی و روش های یادگیری بدون نظارت برای خوشه بندی داده ها ارائه می کند. و کاربردهای دنیای واقعی تکنیک های هوش مصنوعی در داده کاوی، برای نتایج بهبود یافته در تشخیص بالینی، استخراج داده های ماهواره ای، کشاورزی، امنیت و دفاع


توضیحاتی درمورد کتاب به خارجی

Artificial Intelligence in Data Mining: Theories and Applications offers a comprehensive introduction to data mining theories, relevant AI techniques, and their many real-world applications. This book is written by experienced engineers for engineers, biomedical engineers, and researchers in neural networks, as well as computer scientists with an interest in the area. Provides coverage of the fundamentals of Artificial Intelligence as applied to data mining, including computational intelligence and unsupervised learning methods for data clustering Presents coverage of key topics such as heuristic methods for data clustering, deep learning methods for data classification, and neural networks Includes case studies and real-world applications of AI techniques in data mining, for improved outcomes in clinical diagnosis, satellite data extraction, agriculture, security and defense



فهرست مطالب

Front Cover
Artificial Intelligence in Data Mining
Copyright Page
Contents
List of contributors
Preface
1 Introduction
	1.1 Data mining
	1.2 Description of data mining
		1.2.1 Different databases adapted for data mining
		1.2.2 Different steps in design process for mining data
	1.3 Tools in data mining
	1.4 Data mining terminologies
	1.5 Merits of data mining
	1.6 Disadvantages of data mining
	1.7 Process of data mining
	1.8 Data mining techniques
	1.9 Data mining applications
	1.10 Intelligent techniques of data mining
	1.11 Expectations of data mining
	References
2 Intelligence methods for data mining task
	2.1 Introduction
	2.2 Procedure for intelligent data mining
		2.2.1 Interest-driven data mining
		2.2.2 Data-driven data mining
	2.3 Associate rule mining
		2.3.1 Different kinds of association rules
	2.4 Association rule mining: multiobjective optimization method
	2.5 Intelligent methods for associate rule mining
		2.5.1 Associate rule mining based on the optimization method
	2.6 Associate rule mining using genetic algorithm
	2.7 Association rule mining using particle swarm optimization
	2.8 Bees swarm optimization–association rule mining algorithm
	2.9 Ant colony optimization algorithm
	2.10 Penguins search optimization algorithm for association rules mining Pe-ARM
	2.11 Deep learning in data mining
	References
3 Unsupervised learning methods for data clustering
	3.1 Data clustering
		3.1.1 Why clustering?
		3.1.2 Fundamentals of cluster analysis
		3.1.3 Needs of unsupervised learning: Why?
		3.1.4 Partitional clustering
	3.2 Mode seeking and mixture-resolving algorithms
		3.2.1 Gaussian mixture models
		3.2.2 Hierarchical clustering
		3.2.3 Hierarchical divisive algorithms
	3.3 Conclusion
4 Heuristic methods for data clustering
	4.1 What is the heuristic method?
		4.1.1 Heuristic method and the formulation of exact solutions
		4.1.2 Clustering-based heuristic methodologies
	4.2 Summary
5 Deep learning methods for data classification
	5.1 Data classification
	5.2 Data mining
		5.2.1 Steps involved in data mining process
	5.3 Background and evolution of deep learning
	5.4 Deep learning methods
		5.4.1 Fully connected neural network
		5.4.2 Deep neural network
		5.4.3 Deep convolutional neural network
		5.4.4 Deep recurrent neural network
		5.4.5 Deep generative adversarial network
		5.4.6 Deep reinforcement learning
		5.4.7 Deep recursive neural network
		5.4.8 Deep long–short-term memory
		5.4.9 Hierarchical deep learning for text
		5.4.10 Deep autoencoder
		5.4.11 Random multimodel deep learning
	References
6 Neural networks for data classification
	6.1 Neural networks
		6.1.1 Background and evolution of neural networks
		6.1.2 Working of neural networks
		6.1.3 Neural networks for data classification
			6.1.3.1 Advantages
			6.1.3.2 Applications
		6.1.4 Characteristics of neural networks
	6.2 Different types of neural networks
		6.2.1 Feedforward neural network
			6.2.1.1 Applications
				6.2.1.1.1 Multilayered feedforward neural network
		6.2.2 Radial basis function neural network
		6.2.3 Multilayer perceptron
		6.2.4 Convolutional neural network
			6.2.4.1 Application
		6.2.5 Recurrent neural network
		6.2.6 Modular neural network
			6.2.6.1 Advantages of modular neural networks
		6.2.7 Artificial neural network
			6.2.7.1 Advantages
			6.2.7.2 Applications
		6.2.8 Fuzzy neural network
		6.2.9 Probabilistic neural network
	6.3 Training of neural network
	6.4 Training algorithms in neural network for data classification
		6.4.1 Backpropagation algorithm
		6.4.2 Genetic algorithm
		6.4.3 Levenberg–Marquardt algorithm
	References
7 Application of artificial intelligence in the perspective of data mining
	7.1 Artificial intelligence
		7.1.1 Artificial neural networks
		7.1.2 Fuzzy logic
		7.1.3 Genetic algorithm
		7.1.4 Expert system
		7.1.5 Hybrid systems
	7.2 Artificial intelligence versus data mining
	7.3 Modeling theory based on artificial intelligence and data mining
		7.3.1 Modeling, prediction, and forecasting of artificial intelligence using solar radiation data
		7.3.2 Modeling of artificial intelligence in the environmental systems
			7.3.2.1 Case-based reasoning
			7.3.2.2 Rule-based system
			7.3.2.3 Reinforcement learning
			7.3.2.4 Multiagent systems
		7.3.3 Integration of artificial intelligence into water quality modeling
		7.3.4 Modeling of the offset lithographic printing process
		7.3.5 Modeling human teaching tactics and strategies for tutoring systems
		7.3.6 Modeling of artificial intelligence for engine idle speed system and control optimization
		7.3.7 Data mining approach for modeling sediment transport
		7.3.8 Modeling of artificial intelligence for monitoring flood defense structures
			7.3.8.1 Data-driven approach
			7.3.8.2 Model-based approach
		7.3.9 Modeling of artificial intelligence in intelligent manufacturing system
			7.3.9.1 Resources or capabilities layer
			7.3.9.2 Ubiquitous network layer
			7.3.9.3 Service platform layer
			7.3.9.4 General technology
			7.3.9.5 Intelligent manufacturing platform technology
			7.3.9.6 Ubiquitous network technology
			7.3.9.7 Product life cycle manufacturing technology
			7.3.9.8 Supporting technology
		7.3.10 Constitutive modeling of cemented paste backfill
		7.3.11 Spontaneous reporting system modeling for data mining methods evaluation in pharmacovigilance
			7.3.11.1 Summary
	References
8 Biomedical data mining for improved clinical diagnosis
	8.1 Introduction
	8.2 Descriptions and features of data mining
	8.3 Revolution of data mining
	8.4 Data mining for healthcare
		8.4.1 Applications for mining healthcare data
			8.4.1.1 Hospital infection control
			8.4.1.2 Ranking hospitals
			8.4.1.3 Identification of high-risk patients
			8.4.1.4 Diagnosis and prediction of diseases
			8.4.1.5 Effective treatments
			8.4.1.6 Best quality services provided to the patients
			8.4.1.7 Insurance abuse and fraud reduction
			8.4.1.8 Appropriate hospital resource management
			8.4.1.9 Better treatment approaches
	8.5 Data mining for biological application
		8.5.1 DNA sequence analysis
		8.5.2 Protein sequence analysis
		8.5.3 Gene expression analysis
		8.5.4 Gene association analysis
		8.5.5 Macromolecule structure analysis
		8.5.6 Genome analysis
		8.5.7 Pathway analysis
		8.5.8 Microarray analysis
		8.5.9 Computational modeling of biological networks
			8.5.9.1 Biological networks
			8.5.9.2 Modeling of networks
	8.6 Data mining for disease diagnosis
		8.6.1 Neural network for heart disease diagnosis
		8.6.2 Apriori algorithm for frequent disease
		8.6.3 Bayesian network modeling for psychiatric diseases
		8.6.4 Adaptive fuzzy k-nearest neighbor approach for Parkinson’s disease diagnosis
	8.7 Data mining of drug discovery
		8.7.1 Target identification
		8.7.2 Target validation and hit identification
		8.7.3 Hit to lead
		8.7.4 Lead optimization
		8.7.5 Late-stage drug discovery and clinical trials
	References
9 Satellite data: big data extraction and analysis
	9.1 Remote-sensing data: properties and analysis
		9.1.1 Satellite sensors
			9.1.1.1 Advanced Very High-Resolution Radiometer
			9.1.1.2 Landsat Multi-Spectral Scanner
			9.1.1.3 Landsat Thematic Mapper
			9.1.1.4 Landsat Enhanced Thematic Mapper Plus
		9.1.2 Data resolution characteristics
			9.1.2.1 Spatial resolution
			9.1.2.2 Spectral resolution
			9.1.2.3 Radiometric resolution
			9.1.2.4 Temporal resolution
		9.1.3 Data representation
			9.1.3.1 Vector data type
				9.1.3.1.1 ESRI shapefile vector file format
				9.1.3.1.2 Census 200 Topologically Integrated Geographic Encoding and Referencing (TIGER)/Line vector file format
				9.1.3.1.3 Data description
				9.1.3.1.4 Software functionality
				9.1.3.1.5 Advantages of vector data
			9.1.3.2 Raster data type
				9.1.3.2.1 Band Interleaved by Pixel
				9.1.3.2.2 Band interleaved by line
				9.1.3.2.3 Band Sequential
				9.1.3.2.4 Advantages of raster data
		9.1.4 Data mining or extraction
			9.1.4.1 Spatial data mining
			9.1.4.2 Temporal data mining
				9.1.4.2.1 Representations of temporal data
				9.1.4.2.2 Time domain–based representations
				9.1.4.2.3 Transformation-based representations
				9.1.4.2.4 Generative model–based representations
			9.1.4.3 Spatiotemporal data mining
		9.1.5 Big data mining for remote-sensing data
		9.1.6 Big data mining methods for social welfare application
			9.1.6.1 A data mining approach for heavy rainfall forecasting based on satellite image sequence analysis
			9.1.6.2 Using spatial reinforcement learning to build forest wildfire dynamics models from satellite images
			9.1.6.3 Improved density–based spatial clustering of applications of noise clustering algorithm for knowledge discovery in ...
			9.1.6.4 Data mining algorithms for land cover change detection: a review
			9.1.6.5 An autonomous forest fire detection system based on spatial data mining and fuzzy logic
			9.1.6.6 System refinement for content-based satellite image retrieval
			9.1.6.7 Automated detection of clouds in satellite imagery
	9.2 Summary
	References
10 Advancement of data mining methods for improvement of agricultural methods and productivity
	10.1 Agriculture data: properties and analysis
		10.1.1 Data representation
			10.1.1.1 Process-mediated
			10.1.1.2 Machine generated
			10.1.1.3 Human sourced
		10.1.2 Data management
			10.1.2.1 Sensing and monitoring
			10.1.2.2 Analysis and decision-making
			10.1.2.3 Intervention
			10.1.2.4 Data capture
			10.1.2.5 Data storage
			10.1.2.6 Data transfer
			10.1.2.7 Data transformation
			10.1.2.8 Data marketing
		10.1.3 Irrigation management using data mining
			10.1.3.1 Field capacity
			10.1.3.2 Permanent wilting point
			10.1.3.3 Soil density
			10.1.3.4 Fuzzy neural network for irrigation management
			10.1.3.5 Forecast the crop yield
				10.1.3.5.1 DT method for predicting climate parameters
				10.1.3.5.2 Artificial neural networks for wheat yield forecasting
			10.1.3.6 Estimation of the precise amount of water and suggestion of the necessary fertilizers
			10.1.3.7 Prediction of the irrigation events
			10.1.3.8 Minimization of irrigation cost
			10.1.3.9 Accurate suggestion of plants for the soil
				10.1.3.9.1 Alluvial soils
				10.1.3.9.2 Black soils
				10.1.3.9.3 Laterite soils
				10.1.3.9.4 Mountain soils
				10.1.3.9.5 Red and yellow soils
				10.1.3.9.6 Other soils
			10.1.3.10 Measurement of growth rate
				10.1.3.10.1 Determinate growth
				10.1.3.10.2 Indeterminate growth
			10.1.3.11 Growth rate analysis
				10.1.3.11.1 Crop growth rate
				10.1.3.11.2 Absolute growth rate
				10.1.3.11.3 Relative growth rate
				10.1.3.11.4 Growth index
			10.1.3.12 Water body prediction for better crop filed
	10.2 Disease prediction using data mining
		10.2.1 Crop disease prediction
		10.2.2 Rice plant disease prediction
		10.2.3 Leaf disease prediction
		10.2.4 Plant disease prediction
	10.3 Pests monitoring using data mining
		10.3.1 Pest control methods
		10.3.2 NNs algorithm for pest monitoring
		10.3.3 RF algorithm for pest monitoring
	10.4 Summary
	References
11 Advanced data mining for defense and security applications
	11.1 Military data: properties and analysis
		11.1.1 Data source
			11.1.1.1 Radar data
			11.1.1.2 Airborne data
			11.1.1.3 Military communication signal data
			11.1.1.4 Weapon data
		11.1.2 Data protection strategies
			11.1.2.1 Data obfuscation
			11.1.2.2 Data anonymization
			11.1.2.3 Data privacy protection
				11.1.2.3.1 K-anonymity
				11.1.2.3.2 L-diversity
				11.1.2.3.3 T-closeness
				11.1.2.3.4 Randomization technique
				11.1.2.3.5 Data distribution technique
			11.1.2.4 Data encryption
	11.2 Applying data mining for military application
		11.2.1 Data mining application in navy flight and maintenance data to affect flight repair
		11.2.2 Data mining methods used in online military training
		11.2.3 A data mining approach to enhance military demand forecasting
		11.2.4 Architecture of knowledge discovery engine for military commanders using massive runs of simulations
			11.2.4.1 Rule discovery algorithm
			11.2.4.2 Bayesian network
		11.2.5 Adaptive immune genetic algorithm for weapon system optimization in a military big data environment
		11.2.6 Application of data mining analysis to assess military ground vehicle components
			11.2.6.1 Data mining and analysis process
		11.2.7 Data mining model in proactive defense of cyber threats
			11.2.7.1 Synthetic attack generation
		11.2.8 Modeling adaptive defense against cybercrimes with real-time data mining
			11.2.8.1 Information security technologies
			11.2.8.2 Real-time data mining
			11.2.8.3 Summary
	References
Index
Back Cover




نظرات کاربران