دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Albert Chun-Chen Liu. Oscar Ming Kin Law
سری:
ISBN (شابک) : 1119810450, 9781119810452
ناشر: Wiley-IEEE Press
سال نشر: 2021
تعداد صفحات: 240
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 47 Mb
در صورت تبدیل فایل کتاب Artificial Intelligence Hardware Design: Challenges and Solutions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی سخت افزار هوش مصنوعی: چالش ها و راه حل ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Page Contents AuthorBiographies Preface Acknowledgments Table of Figures Chapter 1 Introduction 1.1 Development History 1.2 Neural Network Models 1.3 Neural Network Classification 1.3.1 Supervised Learning 1.3.2 Semi-supervised Learning 1.3.3 Unsupervised Learning 1.4 Neural Network Framework 1.5 Neural Network Comparison Exercise References Chapter 2 Deep Learning 2.1 Neural Network Layer 2.1.1 Convolutional Layer 2.1.2 Activation Layer 2.1.3 Pooling Layer 2.1.4 Normalization Layer 2.1.5 Dropout Layer 2.1.6 Fully Connected Layer 2.2 Deep Learning Challenges Exercise References Chapter 3 Parallel Architecture 3.1 Intel Central Processing Unit (CPU) 3.1.1 Skylake Mesh Architecture 3.1.2 Intel Ultra Path Interconnect (UPI) 3.1.3 Sub Non-unified Memory Access Clustering (SNC) 3.1.4 Cache Hierarchy Changes 3.1.5 Single/Multiple Socket Parallel Processing 3.1.6 Advanced Vector Software Extension 3.1.7 Math Kernel Library for Deep Neural Network (MKL-DNN) 3.2 NVIDIA Graphics Processing Unit (GPU) 3.2.1 Tensor Core Architecture 3.2.2 Winograd Transform 3.2.3 Simultaneous Multithreading (SMT) 3.2.4 High Bandwidth Memory (HBM2) 3.2.5 NVLink2 Configuration 3.3 NVIDIA Deep Learning Accelerator (NVDLA) 3.3.1 Convolution Operation 3.3.2 Single Data Point Operation 3.3.3 Planar Data Operation 3.3.4 Multiplane Operation 3.3.5 Data Memory and Reshape Operations 3.3.6 System Configuration 3.3.7 External Interface 3.3.8 Software Design 3.4 Google Tensor Processing Unit (TPU) 3.4.1 System Architecture 3.4.2 Multiply–Accumulate (MAC) Systolic Array 3.4.3 New Brain Floating-Point Format 3.4.4 Performance Comparison 3.4.5 Cloud TPU Configuration 3.4.6 Cloud Software Architecture 3.5 Microsoft Catapult Fabric Accelerator 3.5.1 System Configuration 3.5.2 Catapult Fabric Architecture 3.5.3 Matrix-Vector Multiplier 3.5.4 Hierarchical Decode and Dispatch (HDD) 3.5.5 Sparse Matrix-Vector Multiplication Exercise References Chapter 4 Streaming Graph Theory 4.1 Blaize Graph Streaming Processor 4.1.1 Stream Graph Model 4.1.2 Depth First Scheduling Approach 4.1.3 Graph Streaming Processor Architecture 4.2 Graphcore Intelligence Processing Unit 4.2.1 Intelligence Processor Unit Architecture 4.2.2 Accumulating Matrix Product (AMP) Unit 4.2.3 Memory Architecture 4.2.4 Interconnect Architecture 4.2.5 Bulk Synchronous Parallel Model Exercise References Chapter 5 Convolution Optimization 5.1 Deep Convolutional Neural Network Accelerator 5.1.1 System Architecture 5.1.2 Filter Decomposition 5.1.3 Streaming Architecture 5.1.4 Pooling 5.1.5 Convolution Unit (CU) Engine 5.1.6 Accumulation (ACCU) Buffer 5.1.7 Model Compression 5.1.8 System Performance 5.2 Eyeriss Accelerator 5.2.1 Eyeriss System Architecture 5.2.2 2D Convolution to 1D Multiplication 5.2.3 Stationary Dataflow 5.2.4 Row Stationary (RS) Dataflow 5.2.5 Run-Length Compression (RLC) 5.2.6 Global Buffer 5.2.7 Processing Element Architecture 5.2.8 Network-on-Chip (NoC) 5.2.9 Eyeriss v2 System Architecture 5.2.10 Hierarchical Mesh Network 5.2.11 Compressed Sparse Column Format 5.2.12 Row Stationary Plus (RS+) Dataflow 5.2.13 System Performance Exercise References Chapter 6 In-Memory Computation 6.1 Neurocube Architecture 6.1.1 Hybrid Memory Cube (HMC) 6.1.2 Memory Centric Neural Computing (MCNC) 6.1.3 Programmable Neurosequence Generator (PNG) 6.1.4 System Performance 6.2 Tetris Accelerator 6.2.1 Memory Hierarchy 6.2.2 In-Memory Accumulation 6.2.3 Data Scheduling 6.2.4 Neural Network Vaults Partition 6.2.5 System Performance 6.3 NeuroStream Accelerator 6.3.1 System Architecture 6.3.2 NeuroStream Coprocessor 6.3.3 4D Tiling Mechanism 6.3.4 System Performance Exercise References Chapter 7 Near-Memory Architecture 7.1 DaDianNao Supercomputer 7.1.1 Memory Configuration 7.1.2 Neural Functional Unit (NFU) 7.1.3 System Performance 7.2 Cnvlutin Accelerator 7.2.1 Basic Operation 7.2.2 System Architecture 7.2.3 Processing Order 7.2.4 Zero-Free Neuron Array Format (ZFNAf) 7.2.5 The Dispatcher 7.2.6 Network Pruning 7.2.7 System Performance 7.2.8 Raw or Encoded Format (RoE) 7.2.9 Vector Ineffectual Activation Identifier Format (VIAI) 7.2.10 Ineffectual Activation Skipping 7.2.11 Ineffectual Weight Skipping Exercise References Chapter 8 Network Sparsity 8.1 Energy Efficient Inference Engine (EIE) 8.1.1 Leading Nonzero Detection (LNZD) Network 8.1.2 Central Control Unit (CCU) 8.1.3 Processing Element (PE) 8.1.4 Deep Compression 8.1.5 Sparse Matrix Computation 8.1.6 System Performance 8.2 Cambricon-X Accelerator 8.2.1 Computation Unit 8.2.2 Buffer Controller 8.2.3 System Performance 8.3 SCNN Accelerator 8.3.1 SCNN PT-IS-CP-Dense Dataflow 8.3.2 SCNN PT-IS-CP-Sparse Dataflow 8.3.3 SCNN Tiled Architecture 8.3.4 Processing Element Architecture 8.3.5 Data Compression 8.3.6 System Performance 8.4 SeerNet Accelerator 8.4.1 Low-Bit Quantization 8.4.2 Efficient Quantization 8.4.3 Quantized Convolution 8.4.4 Inference Acceleration 8.4.5 Sparsity-Mask Encoding 8.4.6 System Performance Exercise References Chapter 9 3D Neural Processing 9.1 3D Integrated Circuit Architecture 9.2 Power Distribution Network 9.3 3D Network Bridge 9.3.1 3D Network-on-Chip 9.3.2 Multiple-Channel High-Speed Link 9.4 Power-Saving Techniques 9.4.1 Power Gating 9.4.2 Clock Gating Exercise References Appendix A Neural Network Topology Index EULA