دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: K. Shankar, Eswaran Perumal, Deepak Gupta سری: Biomedical and Robotics Healthcare ISBN (شابک) : 036774497X, 9780367744977 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 217 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Artificial Intelligence for the Internet of Health Things به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی برای اینترنت چیزهای سلامت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درباره تحقیقات در هوش مصنوعی برای اینترنت چیزهای سلامت بحث میکند. این برنامه کاربردهای احتمالی یادگیری ماشین، یادگیری عمیق، محاسبات نرم، و تکنیکهای محاسبات تکاملی را در طراحی، اجرا و بهینهسازی راهحلهای چالش برانگیز مراقبتهای بهداشتی بررسی و بررسی میکند. این کتاب دارای طیف گستردهای از موضوعات مانند تکنیکهای هوش مصنوعی، اینترنت اشیا، ابر، ابزارهای پوشیدنی و انتقال امن داده است. این کتاب که برای مخاطبان گسترده ای نوشته شده است، برای پزشکان، متخصصان سلامت، مهندسان، توسعه دهندگان فناوری، مشاوران فناوری اطلاعات، محققان و دانشجویان علاقه مند به برنامه های کاربردی مراقبت های بهداشتی مبتنی بر هوش مصنوعی مفید خواهد بود.
K. شانکار (عضو، IEEE) عضو فوق دکتری بخش برنامه های کاربردی کامپیوتر، دانشگاه آلاگاپا، کارایکودی، هند است.
Eswaran Perumal استادیار گروه برنامه های کاربردی کامپیوتر، دانشگاه آلاگاپا، Karaikudi، هند است.
دکتر دیپاک گوپتا، استادیار گروه علوم و مهندسی کامپیوتر، موسسه فناوری مهاراجا آگراسن (GGSIPU)، دهلی، هند است.
This book discusses research in Artificial Intelligence for the Internet of Health Things. It investigates and explores the possible applications of machine learning, deep learning, soft computing, and evolutionary computing techniques in design, implementation, and optimization of challenging healthcare solutions. This book features a wide range of topics such as AI techniques, IoT, cloud, wearables, and secured data transmission. Written for a broad audience, this book will be useful for clinicians, health professionals, engineers, technology developers, IT consultants, researchers, and students interested in the AI-based healthcare applications.
K. Shankar (Member, IEEE) is a Postdoctoral Fellow of the Department of Computer Applications, Alagappa University, Karaikudi, India.
Eswaran Perumal is an Assistant Professor of the Department of Computer Applications, Alagappa University, Karaikudi, India.
Dr. Deepak Gupta is an Assistant Professor of the Department Computer Science & Engineering, Maharaja Agrasen Institute of Technology (GGSIPU), Delhi, India.
Cover Half Title Series Page Title Page Copyright Page Contents Author Biographies Preface Chapter 1: Artificial Intelligence (AI) for IoHT – An Introduction 1.1. Artificial Intelligence (AI) in the Healthcare Domain 1.2. Evolution of AI in the Medical Sector 1.3. Use of AI Devices for Clinical Data Generation 1.4. Types of AI of Relevance to Healthcare 1.4.1. Machine Learning – Neural Networks and Deep Learning 1.4.2. Natural Language Processing 1.4.3. Rule-Based Expert Systems 1.4.4. Physical Robots 1.4.5. Robotic Process Automation 1.5. AI-Based Applications in Healthcare 1.5.1. Patient Engagement and Adherence Applications 1.5.2. Administrative Applications 1.5.3. Implications for the Healthcare Workforce 1.5.4. Ethical Implications 1.6. Conclusion References Chapter 2: Role of Internet of Things and Cloud Computing Technologies in the Healthcare Sector 2.1. Introduction 2.2. IoT-Based Healthcare Framework 2.3. Cloud Computing for Healthcare 2.4. IoT-Based Healthcare Services and Applications 2.4.1. IoT Healthcare Services 2.4.1.1. The Internet of m-Health Things 2.4.1.2. Adverse Drug Reactions 2.4.1.3. Community Healthcare 2.4.1.4. Children’s Health Information 2.4.2. IoT Healthcare Applications 2.4.2.1. Glucose Level Sensing 2.4.2.2. Electrocardiogram Monitoring 2.4.2.3. Blood Pressure Monitoring 2.4.2.4. Body Temperature Monitoring 2.4.3. IoT Healthcare: Current Issues and Challenges 2.4.3.1. Cost Analysis 2.4.3.2. Continuous Monitoring 2.4.3.3. Identification 2.4.3.4. Mobility 2.5. Components in IoT-Based Healthcare Services 2.5.1. IoT Devices 2.5.2. Wireless Technologies for IoT 2.5.3. Web Technologies for IoT 2.6. Conclusion References Chapter 3: An Extensive Overview of Wearable Technologies in the Healthcare Sector 3.1. Introduction 3.2. Background Information 3.2.1. Quantified Self 3.2.2. Wearable Technology 3.2.3. Advantages of Wearable Technology 3.3. Challenges 3.3.1. Sustainability 3.3.2. Digital Divide 3.3.3. Failure Rates 3.3.4. Lack of Predictive Comparability 3.3.5. Privacy and Security 3.4. Typical Wearable Devices With Applications 3.4.1. Wearable Devices Used for General Health Management 3.4.2. Wearable Biosensors Revolutionizing In-Clinic/Hospital Care 3.4.3. Wearable Biosensors Revolutionizing Specific Fields of Healthcare Outside of the Hospital and Clinic 3.4.4. Regulatory Oversight and Economic Impact 3.5. Conclusion References Chapter 4: IoHT and Cloud-Based Disease Diagnosis Model Using Particle Swarm Optimization with Artificial Neural Networks 4.1. Introduction 4.2. The Proposed Model 4.2.1. Data Collection 4.2.2. PSO-ANN Model 4.2.2.1. ANN Model 4.2.2.2. Parameter Optimization of ANN Using PSO 4.2.3. Proposed Diagnostic Model 4.3. Performance Validation 4.4. Conclusion References Chapter 5: IoHT-Based Improved Grey Optimization with Support Vector Machine for Gastrointestinal Hemorrhage Detection and Diagnosis Model 5.1. Introduction 5.2. Proposed Method 5.2.1. Preprocessing 5.2.2. Feature Extraction Process Using NGLCM 5.2.3. NGLCM-IGWO-SVM–Based Classification 5.3. Experimental Validation 5.3.1. Data Set Used 5.3.2. Results Analysis 5.4. Conclusion References Chapter 6: An Effective-Based Personalized Medicine Recommendation System Using an Ensemble of Extreme Learning Machine Model 6.1. Introduction 6.2. The Proposed Medical Recommender System 6.2.1. Database System Module 6.2.2. Data Preparation Module 6.2.3. Recommendation Model Module 6.2.4. Model Evaluation Module 6.2.5. Proposed Recommendation Model 6.2.5.1. Extreme Learning Machine (ELM) 6.2.5.2. b-ELM Classifier 6.3. Experimental Results and Discussion 6.4. Conclusion References Chapter 7: A Novel MapReduce-Based Hybrid Decision Tree with TFIDF Algorithm for Public Sentiment Mining of Diabetes Mellitus 7.1. Introduction 7.2. The Proposed Model 7.2.1. Data Collection 7.2.2. Data Preprocessing and Integration 7.2.2.1. Data Tokenization 7.2.2.2. Generating and Removing Stop Words 7.2.2.3. Detecting Stop Words with SentiCircles 7.2.2.4. Stemming and Lemmatization 7.2.2.5. Corpus Generation 7.2.2.6. Tagging 7.2.3. Data Analysis Stage 7.2.3.1. MPHDT-T-Based Opinion Mining 7.2.3.2. Decision Tree (DT) 7.2.3.3. Term Frequency-Inverse Document Frequency (TFIDF) 7.3. Performance Validation 7.4. Conclusion References Chapter 8: IoHT with Artificial Intelligence–Based Breast Cancer Diagnosis Model 8.1. Introduction 8.2. Related Works 8.3. The Proposed Model 8.3.1. Image Acquisition 8.3.2. Preprocessing 8.3.3. HFE Model 8.3.3.1. Homogeneity 8.3.3.2. Energy 8.3.3.3. HOG Features 8.3.4. GA-SVM-Based Classification 8.3.4.1. Chromosome Design 8.3.4.2. Fitness Function 8.3.4.3. Hybridization of the GA-SVM Algorithm 8.4. Performance Validation 8.5. Conclusion References Chapter 9: Artificial Intelligence with a Cloud-Based Medical Image Retrieval System Using a Deep Neural Network 9.1. Introduction 9.2. The Proposed DC-DNN Model 9.2.1. DLTerQEP-Based Texture Feature Extraction 9.2.2. Crest Line–Based Shape Feature Extraction 9.2.2.1. Curvature Approximation 9.2.2.2. Crest Point Classification 9.2.2.3. Crest Lines 9.2.3. Euclidean Distance–Based Similarity 9.2.4. DNN-Based Classification 9.3. Performance Validation 9.3.1. Data Set Used 9.3.2. Results Analysis 9.4. Conclusion References Chapter 10: IoHT with Cloud-Based Brain Tumor Detection Using Particle Swarm Optimization with Support Vector Machine 10.1. Introduction 10.2. The Proposed GLCM-PSO-SVM Model 10.2.1. Preprocessing 10.2.2. Feature Extraction 10.2.3. PSO-SVM-Based Classification 10.2.3.1. SVM Classifier 10.2.3.2. Parameter Optimization of SVM Using the PSO Algorithm 10.3. Experimental Analysis 10.3.1. Data Set Description 10.3.2. Evaluation Metrics 10.3.3. Results Analysis 10.4. Conclusion References Chapter 11: Artificial Intelligence-Based Hough Transform with an Adaptive Neuro-Fuzzy Inference System for a Diabetic Retinopathy Classification Model 11.1. Introduction 11.2. Proposed Method 11.2.1. Preprocessing 11.2.2. Watershed-Based Segmentation 11.2.3. Hough Transform–Based Feature Extraction 11.2.4. ANFIS-Based Classification 11.3. Performance Analysis 11.3.1. Data Set Description 11.3.2. Results Analysis 11.4. Conclusion References Chapter 12: An IoHT–Based Intelligent Skin Lesion Detection and Classification Model in Dermoscopic Images 12.1. Introduction 12.2. The SIFT-SVM 12.2.1. Bilateral Filtering–Based Preprocessing 12.2.2. Image Segmentation 12.2.3. Feature Extraction 12.2.3.1. Detect Scale-Space Extrema 12.2.3.2. Localized Feature Points 12.2.3.3. Assignment of Orientation 12.2.3.4. Feature Point Descriptor 12.2.4. Image Classification 12.3. Performance Validation 12.3.1. Data Set Used 12.3.2. Results Analysis 12.4. Conclusion References Chapter 13: An IoHT-Based Image Compression Model Using Modified Cuckoo Search Algorithm with Vector Quantization 13.1. Introduction 13.2. Vector Quantization and LBG Algorithm 13.3. Proposed MCS-LBG Algorithm–Based VQ 13.3.1. CS Algorithm 13.3.2. MCS Algorithm 13.3.3. Working Process of MCS-LBG Algorithm 13.4. Performance Validation 13.5. Conclusion References Chapter 14: An Effective Secure Medical Image Transmission Using Improved Particle Swarm Optimization and Wavelet Transform 14.1. Introduction 14.2. The IPSO-DWT Method 14.2.1. Embedded Procedure 14.2.2. Extraction of the Secret Message 14.2.1.1. Representation of the Stego Key 14.2.1.2. Embedded Process 14.2.3. IPSO-Based Pixel Selection Process 14.3. Performance Validation 14.4. Conclusion References Chapter 15: IoHT with Wearable Devices–Based Feature Extraction and a Deep Neural Networks Classification Model for Heart Disease Diagnosis 15.1. Introduction 15.2. Proposed Model 15.2.1. IoHT-Based Patient Data Collection 15.2.2. IoHT Medical Data Preprocessing 15.2.3. Heart Feature Extraction 15.2.4. DNN for Data Classification 15.2.4.1. Training of Layers 15.2.4.2. The Stacked Autoencoder 15.2.4.3. The Softmax Layer 15.3. Performance Validation 15.4. Conclusion References Index