دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: William Lawless (editor), Ranjeev Mittu (editor), Donald Sofge (editor), Ira S S Moskowitz (editor), Stephen Russell (editor) سری: ISBN (شابک) : 0128176369, 9780128176368 ناشر: Academic Press سال نشر: 2019 تعداد صفحات: 306 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 مگابایت
در صورت تبدیل فایل کتاب Artificial Intelligence for the Internet of Everything به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی برای اینترنت همه چیز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هوش مصنوعی برای اینترنت همه چیز مبانی، معیارها و کاربردهای سیستم های IoE را در نظر می گیرد. این را پوشش می دهد که آیا دستگاه ها و سیستم های IoE باید فقط با یکدیگر صحبت کنند، با انسان یا هر دو. علاوه بر این، این کتاب به بررسی چگونگی تأثیر سیستمهای IoE بر مخاطبان هدف (محققان، ماشینها، روباتها، کاربران) و جامعه و همچنین اکوسیستمهای آینده میپردازد. این به بررسی معنا، ارزش و تأثیری میپردازد که اینترنت اشیا بر زندگی عادی، تجارت، میدان جنگ و با ظهور سیستمهای هوشمند و مستقل داشته و ممکن است داشته باشد. این کتاب بر اساس دیدگاه هوش مصنوعی (AI)، به چگونگی تأثیر IoE بر حس، ادراک، شناخت و رفتار میپردازد.
هر فصل به سؤالات عملی، اندازهگیری، نظری و تحقیقاتی در مورد چگونگی تأثیر این «چیزها» میپردازد. افراد، تیم ها، جامعه یا یکدیگر. تمرکز ویژه این است که چه اتفاقی ممکن است بیفتد وقتی این "چیزها شروع به استدلال، ارتباط و عمل مستقل به خودی خود کنند، چه به طور مستقل یا وابسته به یکدیگر با "چیزها" دیگر.
Artificial Intelligence for the Internet of Everything considers the foundations, metrics and applications of IoE systems. It covers whether devices and IoE systems should speak only to each other, to humans or to both. Further, the book explores how IoE systems affect targeted audiences (researchers, machines, robots, users) and society, as well as future ecosystems. It examines the meaning, value and effect that IoT has had and may have on ordinary life, in business, on the battlefield, and with the rise of intelligent and autonomous systems. Based on an artificial intelligence (AI) perspective, this book addresses how IoE affects sensing, perception, cognition and behavior.
Each chapter addresses practical, measurement, theoretical and research questions about how these “things may affect individuals, teams, society or each other. Of particular focus is what may happen when these “things begin to reason, communicate and act autonomously on their own, whether independently or interdependently with other “things.
Front Cover Artificial Intelligence For The Internet of Everything Copyright Contents Contributors Chapter 1: Introduction 1.1. Introduction: IoE: IoT, IoBT, and IoIT-Background and Overview 1.2. Introductions to the Technical Chapters References Chapter 2: Uncertainty Quantification in Internet of Battlefield Things 2.1. Introduction 2.2. Background and Motivating IoBT Scenario 2.2.1. Detecting Vehicle-Borne IEDs in Urban Environments 2.3. Optimization in Machine Learning 2.3.1. Optimization Problem 2.3.2. Stochastic Gradient Descent Algorithm 2.3.3. Example: Logistic Regression 2.3.4. SGD Variants 2.3.4.1. Mini-Batch SGD 2.3.4.2. SGD With Momentum 2.3.5. Nesterov's Accelerated Gradient Descent 2.3.6. Generalized Linear Models 2.3.7. Learning Feature Representations for Inference 2.4. Uncertainty Quantification in Machine Learning 2.4.1. Gaussian Process Regression 2.4.2. Neural Network 2.4.3. Uncertainty Quantification in Deep Neural Network 2.5. Adversarial Learning in DNN 2.6. Summary and Conclusion References Chapter 3: Intelligent Autonomous Things on the Battlefield 3.1. Introduction 3.2. The Challenges of Autonomous Intelligence on the Battlefield 3.3. AI Will Fight the Cyber Adversary 3.4. AI Will Perceive the Complex World 3.5. AI Enables Embodied Agents 3.6. Coordination Requires AI 3.7. Humans in the Ocean of Things 3.8. Summary References Further Reading Chapter 4: Active Inference in Multiagent Systems: Context-Driven Collaboration and Decentralized Purpose-Driven Team Ada ... 4.1. Introduction 4.2. Energy-Based Adaptive Agent Behaviors 4.2.1. Free Energy Principle 4.2.2. Adaptive Behavior and Context 4.2.3. Formal Definitions 4.2.4. Behavior Workflow and Computational Considerations 4.3. Application of Energy Formalism to Multiagent Teams 4.3.1. Motivation 4.3.2. Problem Definition 4.3.3. Distributed Collaborative Search Via Free Energy Minimization 4.3.4. Adapting Team Structure 4.4. Validation Experiments 4.4.1. Experiment Setup 4.4.2. Discrete Decision Making Versus Free Energy 4.4.3. Impact of Agent Network Structure 4.4.4. Impact of Decision Decomposition 4.5. Conclusions References Further Reading Chapter 5: Policy Issues Regarding Implementations of Cyber Attack: Resilience Solutions for Cyber Physical Systems 5.1. Introduction: Context 5.2. The Need to Address Cybersecurity for Physical Systems 5.2.1. Historic Patterns for Addressing Cybersecurity 5.2.2. Mission-Based Cybersecurity 5.2.3. Education of Engineers and Policy-Makers 5.3. Cybersecurity Role and Certification of the Operators of Physical Systems 5.4. Data Curation 5.5. Market Incentives 5.6. Conclusions and Recommendations Acknowledgments References Further Reading Chapter 6: Trust and Human-Machine Teaming: A Qualitative Study 6.1. Background 6.1.1. Human-Machine Trust 6.1.2. Human-Machine Teaming 6.1.3. Perceived Agency 6.1.4. Perceived Benevolence 6.1.5. Perceived Task Interdependence 6.1.6. Relationship-Building 6.1.7. Communication Richness 6.1.8. Synchrony 6.2. Method 6.2.1. Participants 6.2.2. Study Description and Items 6.2.3. Coding Method 6.2.4. Trust 6.2.5. Human-Machine Teaming 6.3. Results 6.4. Discussion 6.5. Conclusion References Further Reading Chapter 7: The Web of Smart Entities-Aspects of a Theory of the Next Generation of the Internet of Things 7.1. Introduction 7.2. Smart Things 7.3. A Vision of the Next Generation of the IoT 7.3.1. Interlude 7.4. The Use of Artificial Intelligence in the Web of Smart Entities 7.5. Towards a Theory of the Web of Smart Entities 7.5.1. Real-Time Data 7.5.2. Real-Time Models 7.5.3. Automation 7.5.4. Web of Smart Entities 7.5.5. Changing Roles of Stakeholders 7.6. Interacting With Automation 7.6.1. Fully Autonomous 7.6.2. Semiautonomous 7.6.3. Manual 7.6.4. Extent of Automation 7.7. Depth of WSE 7.8. Conclusions Acknowledgments References Chapter 8: Raising Them Right: AI and the Internet of Big Things 8.1. Introduction 8.2. ``Things Are About to Get Weird´´ 8.3. Raise Them Right 8.4. Learning to Live With It Chapter 9: The Value of Information and the Internet of Thingsa 9.1. Introduction 9.2. The Internet of Things and Artificial Intelligence 9.3. Reworking Howard's Initial Example 9.4. Value Discussion 9.4.1. Generalization 9.5. Clairvoyance About C 9.6. Clairvoyance About L 9.7. Clairvoyance About C and L 9.8. Discussion 9.9. Conclusion Acknowledgments References Chapter 10: Would IOET Make Economics More Neoclassical or More Behavioral? Richard Thalers Prediction, a Revisit 10.1. Motivation and Introduction 10.2. Walrasian Auctioneer and Unmanned Markets 10.3. Homo Economicus vs. Homo Sapiens 10.3.1. Cyborgs 10.3.2. Trend Reversal 10.3.3. Trend Sustaining 10.4. Concluding Remarks Acknowledgments References Chapter 11: Accessing Validity of Argumentation of Agents of the Internet of Everything 11.1. Introduction 11.2. Representing Argumentative Discourse 11.3. Detecting Invalid Argumentation Patterns 11.4. Recognizing Communicative Discourse Trees for Argumentation 11.5. Assessing Validity of Extracted Argument Patterns Via Dialectical Analysis 11.6. Intense Arguments Dataset 11.7. Evaluation of Detection and Validation of Arguments 11.8. Conclusions References Further Reading Chapter 12: Distributed Autonomous Energy Organizations: Next-Generation Blockchain Applications for Energy Infrastructure 12.1. Introduction to Distributed Autonomous Energy Organizations 12.1.1. DAEO Enablers: AI and Blockchain 12.2. Distributed Energy Supply Chain 12.3. AI-Blockchain to Secure Your Energy Supply Chain 12.4. Potential Blockchain Business and Implementation Challenges 12.5. Roadmap for When to Use Blockchain in the Energy Sector 12.6. The Evolution of Public Key Infrastructure Encryption 12.7. Why Blockchain, Why DAEO 12.8. Overview of the AI-Enabled Blockchain 12.9. Blockchain and AI Security Opportunity 12.10. Conclusion and Future Research References Further Reading Chapter 13: Compositional Models for Complex Systems 13.1. Introduction 13.2. Characteristics of Complex Systems 13.2.1. Heterogeneity of Components 13.2.2. Open Interaction 13.2.3. Multiplicity of Perspectives 13.2.4. Joint Cognition 13.3. System Design Is a Recursive Process 13.4. Inductive Datatypes and Algebraic Structures 13.5. Coalgebra and Infinite Datatypes 13.6. Operads as Compositional Architectures 13.7. Architectures for Learning 13.8. Conclusion Disclaimer References Chapter 14: Meta-Agents: Using Multi-Agent Networks to Manage Dynamic Changes in the Internet of Things 14.1. Introduction 14.2. Managing Complexity 14.3. Sentry AGEnts 14.4. An Illustrative Example 14.5. Reasoning 14.6. Challenges and Conclusion Acknowledgments References Index Back Cover