دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: انرژی: انرژی تجدید پذیر ویرایش: نویسندگان: Bhavnesh Kumar, Bhanu Pratap, Vivek Shrivastava سری: Explainable AI (XAI) for Engineering Applications ISBN (شابک) : 9781032054414, 9781003222286 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 309 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 مگابایت
در صورت تبدیل فایل کتاب Artificial Intelligence for Solar Photovoltaic Systems: Approaches, Methodologies, and Technologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی برای سیستمهای فتوولتائیک خورشیدی: رویکردها، روشها و فناوریها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب توضیح واضحی در مورد چگونگی استفاده از هوش مصنوعی (AI) برای حل چالشهای فناوری فتوولتائیک خورشیدی ارائه میدهد. خوانندگان را با رویکردها و فناوری های مبتنی بر هوش مصنوعی آشنا می کند که به مدیریت و بهره برداری موثر سیستم های فتوولتائیک خورشیدی کمک می کند. همچنین با ارائه مجموعهای جامع از یافتههای تکنیکهای هوش مصنوعی، خوانندگان را تشویق میکند تا راهحلهای جدید مبتنی بر هوش مصنوعی را برای این چالشها بیابند. موضوعات مهمی از جمله تغییرپذیری تابش خورشیدی، پیشبینی انرژی خورشیدی، پیشبینی تابش خورشیدی، ردیابی نقطه حداکثر توان، الگوریتمهای ترکیبی، بهینهسازی ازدحام، بهینهسازی تکاملی، سیستمهای ردیابی خورشید مبتنی بر حسگر، سیستمهای ردیابی خورشید تک محوره و دو محوره را پوشش میدهد. ، اندازه گیری هوشمند، تنظیم فرکانس با استفاده از هوش مصنوعی، توپولوژی های اینورتر چند سطحی در حال ظهور، و کنترل ولتاژ و توان راکتیو با استفاده از هوش مصنوعی. این کتاب برای دانشجویان ارشد، دانشجویان کارشناسی ارشد و محققان دانشگاهی در زمینه هایی مانند مهندسی برق، مهندسی الکترونیک و ارتباطات، علوم کامپیوتر و انرژی های تجدیدپذیر مفید است.
This book provides a clear explanation of how to apply artificial intelligence (AI) to solve the challenges in solar photovoltaic technology. It introduces readers to new AI-based approaches and technologies that help manage and operate solar photovoltaic systems effectively. It also motivates readers to find new AI-based solutions for these challenges by providing a comprehensive collection of findings on AI techniques. It covers important topics including solar irradiance variability, solar power forecasting, solar irradiance forecasting, maximum power point tracking, hybrid algorithms, swarm optimization, evolutionary optimization, sensor-based sun- tracking systems, single-axis and dual-axis sun-tracking systems, smart metering, frequency regulation using AI, emerging multilevel inverter topologies, and voltage and reactive power control using AI. This book is useful for senior undergraduate students, graduate students, and academic researchers in areas such as electrical engineering, electronics and communication engineering, computer science, and renewable energy.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Content Preface About the Book Editors Contributors 1. History and Application of Solar PV System 1.1 Introduction: Solar PV System 1.2 Historical Background of Solar Cell 1.2.1 Historical Development of Solar PV System in India 1.3 Application of Solar Energy 1.3.1 Residential Application 1.3.2 Industrial Application 1.3.3 Transportation 1.3.4 Solar Water Heating 1.3.5 Solar Desalination 1.3.6 Solar Cooking 1.3.7 Solar Energy of Industry Process/Heating 1.3.8 Solar Pumps for Agriculture 1.3.9 Some Recent Advance Application 1.3.9.1 Solar Energy in Electric Vehicle 1.3.9.2 Solar-Powered Airplanes and Railways 1.3.9.3 Solar Energy used in Space Applications 1.4 Basic Components of Solar PV System 1.4.1 Solar Panels 1.4.2 Controller 1.4.3 Solar Performance Monitoring Equipment 1.4.4 Solar Storage 1.4.5 Solar Inverter 1.4.6 AC and DC Distribution 1.4.7 Mounting Support References 2. Solar Power Forecasting 2.1 Introduction 2.2 Tools and Techniques for Solar Forecasting 2.2.1 Tools 2.2.2 Techniques for Solar Forecasting 2.3 Solar Spectrum 2.4 Solar Radiation Geometry 2.5 Solar Power Prediction Techniques 2.5.1 Support Vector Regression (SVR) 2.5.2 XG BOOST 2.5.3 Random Forest 2.5.4 Artificial Neural Network 2.5.5 Long-Short Term Memory (LSTM) Model 2.6 Results and Discussion 2.7 Conclusion References 3. Comprehensive Technique for Modeling of PV Module Nomenclature 3.1 Introduction 3.2 Mathematical Modeling of Two-Diode Model of PV Module 3.3 Fundamental Calculation of the Parameters 3.3.1 Calculation of Photovoltaic Current 3.3.2 Calculation of Diode Ideality Constants 3.3.3 Calculation of Diode Reverse Saturation Currents 3.3.4 Calculation of Series and Parallel Resistances 3.3.4.1 Fitness Function 3.3.4.2 Initialization of Population 3.3.4.3 Constraints on Series and Parallel Resistances 3.3.4.4 Selection 3.3.4.5 Crossover 3.3.4.6 Mutation 3.4 Upgrading the Model 3.4.1 First Degree of Upgradation 3.4.1.1 Calculation of Upgraded Photovoltaic Current 3.4.1.2 Calculation of Upgraded Diode Ideality Constants 3.4.1.3 Calculation of Upgraded Diode Reverse Saturation Currents 3.4.1.4 Calculation of Upgraded Series and Parallel Resistances 3.4.2 Second Degree of Upgradation 3.5 Dependence of Parameters of the Characteristic Equation of PV Module on Irradiance and Temperature 3.6 Calculation of Parameters of the Characteristic Equation of PV Module at STC 3.7 Calculation of Parameters of the Characteristic Equation of PV Module at NOCTC 3.8 Validation of the Proposed Model 3.9 Conclusion References 4. Conventional Techniques for Maximum Power Point Tracking 4.1 Introduction 4.1.1 Need for Solar Energy 4.2 Solar Energy 4.3 Need of MPPT 4.4 MPPT 4.4.1 MPPT Solar Charge Controller 4.5 Conventional MPPT Techniques 4.5.1 Perturb and Observe (P&O) MPPT Technique 4.5.2 Variable Step Size (VSS) P&O MPPT Method 4.5.3 Modified P&O 4.5.4 Simulation Results of P&O MPPT Technique 4.5.5 Incremental Conductance (I&C) MPPT Technique 4.6 Conclusion References 5. Intelligent Techniques for Maximum Power Point Tracking 5.1 Introduction 5.2 Different MPPT Techniques Used in PV System 5.3 Intelligent MPPT Techniques and Algorithms 5.3.1 Artificial Intelligence–Based MPPT 5.2.2 Bioinspired/Nature-Inspired Algorithm (Optimization) 5.2.3 Hybrid-Based MPPT 5.4 Conclusion References 6. Analysis of Multijunction Solar Cell-Based PV System with MPPT Schemes 6.1 Introduction 6.2 Literature Review 6.3 Modeling of MJSC-Based PV System 6.3.1 System Description 6.3.2 Mathematical Modeling of MJSC 6.3.2.1 Photocurrent Density (J[sub(phi)]) 6.3.2.2 Diode Current Density (J[sub(d)]) 6.3.2.3 Shunt Current Density (J[sub(pr)]) 6.3.2.4 Voltage (V) 6.3.3 DC–DC Converter 6.3.3.1 Generic Boost Converter Arrangement 6.3.3.2 Modeling of Boost Converter 6.4 Maximum Power Point Tracking Techniques 6.4.1 Perturb and Observe (P&O) Technique 6.4.1.1 Paces of P&O Technique 6.4.2 Incremental Conductance (INC) Technique 6.4.3 Teaching Learning-Based Optimization Technique (TLBO) 6.5 Enactment Procedure 6.5.1 Simulation of MJSC 6.5.1.1 Reverse Saturation Current Density of Diode (J[sub(oi)]) Evaluation 6.5.1.2 Open-Circuit Voltage (V[sub(oci)]) Evaluation 6.5.1.3 Photo Current Density (J[sub(phi)]) Evaluation 6.5.1.4 Current Density of Cell (J[sub(i)]) Evaluation 6.5.2 MJSC Implementation 6.5.3 Execution of MPPT Techniques with MJSC 6.5.3.1 Simulation Model Using P&O Technique 6.5.3.2 Simulation Model Using INC Technique 6.5.3.3 Simulation Model Using TLBO Technique 6.6 Results and Analysis 6.6.1 Results of MJSC 6.6.2 Results Analysis 6.7 Conclusion Appendix: Specifications for MJSC References 7. Emerging Techniques of Shade Dispersion Nomenclature 7.1 Introduction 7.2 Recent Developments 7.3 Methodology 7.3.1 Modeling and Mathematical Description of PV System 7.3.1.1 PV Array and Partial Shading Condition (PSC) 7.3.2 Simulink Model of Pre-defined PV array Interconnection 7.3.2.1 Electrical Interconnection of TCT 7.3.2.2 Electrical Interconnection of SP-T 7.3.2.3 Electrical Interconnection of BL-T 7.3.3 Particle Swarm Optimization (PSO) Implementation 7.3.3.1 PSO Code for Rearranging Shade Pattern 7.3.4 Genetic Algorithm (GA) Implementation 7.3.4.1 GA Code for Rearranging Shade Pattern 7.4 Results and Discussion 7.4.1 Series Parallel Total Cross Tied (SP-T) 7.4.2 Total Cross Tied (TCT) 7.4.3 Bridge Link Total Cross Tied (BL-T) References 8. Solar Tracking Technology to Harness the Green Energy 8.1 Introduction 8.2 Electrical Energy from Solar Cell 8.2.1 Mathematical Conceptualization of PV Panel 8.2.2 Modeling of Ideal Photovoltaic Cell 8.2.3 Modeling of Practical/Real-Time Photovoltaic Cell 8.2.4 Modeling of a Typical Sun Tracking System 8.2.5 TLB Optimization-Based-Tuning of PID Controller 8.3 Solar Tracker System 8.3.1 Components of a Solar Tracker System 8.4 Classification of Mechanical Tracking Systems 8.4.1 Based on Driving Systems Employed 8.4.1.1 Passive Solar Tracking (PST) System 8.4.1.2 Active Solar Tracking (AST) System 8.4.2 Based on the Degree of Freedom 8.4.2.1 Single-Axis Solar Tracking System 8.4.2.2 Dual-Axis Solar Tracking System 8.4.3 Based on Control Technique 8.4.3.1 Open-Loop Solar Tracking (OLST) Systems 8.4.3.2 Closed-Loop Solar Tracking (CLST) Systems 8.4.4 Based on Tracking Approaches 8.4.4.1 Using Date and Time 8.4.4.2 Employing Sensors, Date, and Time 8.4.4.3 Employing Various Microprocessors and Electro-Optical Sensors 8.4.4.4 AI-Based Solar Tracking Systems 8.4.5 Comparison of Solar Tracker Systems 8.4.6 Limitations of Solar Tracking Systems 8.5 Conclusions References 9. Development of Solar Panel Models in Different Countries/Regions 9.1 Introduction: Background 9.2 Literature Review 9.3 Proposed Developed Model and Methodology 9.4 Results and Discussion 9.5 Conclusion Acknowledgment References 10. Performance Degradation in Solar Modules 10.1 Introduction 10.2 Causes and Rate of Degradation of Solar Panel 10.3 Degradation Types of Photovoltaic Modules 10.3.1 Corrosion of PV Module 10.3.2 Delamination of PV Module 10.3.3 Discoloration of PV Module 10.3.4 Breakage and Cracks in PV Modules 10.3.5 Potential-Induced Degradation (PID) 10.3.6 Hot Spots 10.3.7 Bubbles 10.4 PV Module Degradation Models 10.4.1 Pan Model 10.4.2 Exponential Model 10.4.3 Model of Degradation by UV Stress 10.4.4 Model of Degradation by Temperature Stress 10.4.5 Model of Temperature and Humidity Stress Degradation 10.5 Performance Assessment Techniques 10.5.1 Final Yield 10.5.2 Reference Yield 10.5.3 Performance Ratio 10.5.4 PVUSA Rating 10.5.5 Capacity Factor 10.5.6 System Efficiency 10.6 Degradation Rates of Various Cell Technologies 10.7 Conclusions References 11. Performance and Reliability Investigation of Practical Microgrid with Photovoltaic Units 11.1 Introduction 11.2 Technological Development 11.3 PV Design 11.3.1 Maximum Power Point Tracking 11.3.2 Boost Converter 11.4 PV Unit 11.4.1 Grid-Connected PV Unit 11.4.1.1 Components 11.4.2 Stand-Alone PV Unit 11.4.3 Advantages of a Grid-Connected Unit 11.4.4 Disadvantages of a Grid-Connected PV Unit 11.5 Simulated PV Unit with Grid Connection 11.6 Simulation Results and Discussion 11.6.1 Input to PV Unit 11.6.2 Effect on PV Parameters by Varying Irradiation and Temperature 11.6.3 Dynamic Performance of Simulated PV Unit During Variation of the Solar Irradiance When Connected to the Grid 11.7 Improvements in the PV Unit Connected to Grid 11.7.1 Economic Aspect of Grid-Connected PV Unit 11.7.2 Reliability Associated with Grid-Connected PV Unit 11.8 Case Study 11.8.1 Reliability Data 11.8.2 Sensitivity Analysis 11.9 Conclusion References Index