دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Abraham. Ajith, Dash. Sujata, Pani. Subhendu Kumar, García-Hernández. Laura, , Sujata Dash, Subhendu Kumar Pani, Laura García-Hernández سری: ISBN (شابک) : 9780323902779 ناشر: Elsevier Science & Technology سال نشر: 2022 تعداد صفحات: زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Artificial Intelligence for Neurological Disorders به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی برای اختلالات عصبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هوش مصنوعی برای اختلالات عصبی منبع جامعی از رویکردهای پیشرفته برای هوش مصنوعی، تجزیه و تحلیل داده های بزرگ و تحقیقات عصبی مبتنی بر یادگیری ماشینی فراهم می کند. این کتاب بسیاری از تکنیکهای یادگیری ماشینی را برای تشخیص بیماریهای عصبی در سطح سلولی و همچنین کاربردهای دیگری مانند تقسیمبندی تصویر، طبقهبندی و نمایهسازی تصویر، شبکههای عصبی و روشهای پردازش تصویر مورد بحث قرار میدهد. فصلها شامل تکنیکهای هوش مصنوعی برای تشخیص زودهنگام بیماریهای عصبی و کاربردهای یادگیری عمیق با استفاده از روشهای تصویربرداری مغز مانند EEG، MEG، fMRI، fNIRS و PET برای پیشبینی تشنج یا توانبخشی عصبی عضلانی است. هدف این کتاب ارائه پوشش گستردهای از این روشها به خوانندگان برای تشویق به پذیرش گستردهتر هوش مصنوعی، یادگیری ماشین و تجزیه و تحلیل دادههای بزرگ برای حل مسئله و تحریک پیشرفتهای تحقیقاتی و درمانی عصبی است. روشهای مختلف هوش مصنوعی و ML برای اعمال تحقیقات عصبی را مورد بحث قرار میدهد. تکنیکهای یادگیری عمیق برای تصاویر MRI مغز را بررسی میکند تکنیکهای هوش مصنوعی برای تشخیص زودهنگام بیماریهای عصبی و پیشبینی تشنج را بررسی میکند. درمانهای شناختی را با استفاده از روشهای هوش مصنوعی و یادگیری عمیق بررسی میکند.
Artificial Intelligence for Neurological Disorders provides a comprehensive resource of state-of-the-art approaches for AI, big data analytics and machine learning-based neurological research. The book discusses many machine learning techniques to detect neurological diseases at the cellular level, as well as other applications such as image segmentation, classification and image indexing, neural networks and image processing methods. Chapters include AI techniques for the early detection of neurological disease and deep learning applications using brain imaging methods like EEG, MEG, fMRI, fNIRS and PET for seizure prediction or neuromuscular rehabilitation. The goal of this book is to provide readers with broad coverage of these methods to encourage an even wider adoption of AI, Machine Learning and Big Data Analytics for problem-solving and stimulating neurological research and therapy advances. Discusses various AI and ML methods to apply for neurological research Explores Deep Learning techniques for brain MRI images Covers AI techniques for the early detection of neurological diseases and seizure prediction Examines cognitive therapies using AI and Deep Learning methods
Front Cover Artificial Intelligence for Neurological Disorders Copyright Dedication Contents Contributors About the editors Preface Overview Objective Organization Acknowledgment Chapter 1: Early detection of neurological diseases using machine learning and deep learning techniques: A review Introduction Support vector machine Random forest Logistic regression Convolutional neural network Literature review Machine learning algorithms Deep learning algorithms Methodology and result analysis Proposed method Conclusion References Chapter 2: A predictive method for emotional sentiment analysis by deep learning from EEG of brainwave dataset Introduction Literature review Materials and methods IoT-based Muse headband Feature selection Datasets Feature selection algorithms Symmetric uncertainty Deep learning model LSTM classification Result analysis Conclusion and discussion References Chapter 3: Machine learning and deep learning models for early-stage detection of Alzheimer's disease and its proli Introduction How does AD affect the patient's life and normal functioning? Can AD onset be avoided or at least be delayed? Symptoms Pathophysiology of AD Management of AD Introduction to machine learning and deep learning and their suitability to AD diagnosis State of the art/national and international status Conclusion References Further reading Chapter 4: Convolutional neural network model for identifying neurological visual disorder Introduction Human visual system Visual cortex Vision disorders Cortical blindness Acquired cortical blindness Congenital cortical blindness Transient cortical blindness Convolutional neural network Image recognition Image classification Cognitive application Neurological visual disorder identifying model Receptive field Activation map Kernel filter Conclusion References Chapter 5: Recurrent neural network model for identifying neurological auditory disorder Introduction Human auditory system Neurological auditory disorder Central auditory nervous system Cortical deafness Recurrent neural network Speech recognition Auditory event-related potentials Sentence boundary disambiguation Neurological auditory disorder identifying model Audio segmentation Phonetic recognition Attention mechanism Conclusion References Chapter 6: Recurrent neural network model for identifying epilepsy based neurological auditory disorder Introduction Related research Multiperspective learning techniques TSK fuzzy system Proposed method Shallow feature acquisition of EEG signals Shallow feature construction in time-frequency domain Acquisition of deep features based on deep learning Frequency domain deep feature extraction network Time-frequency domain deep feature extraction network Multiview TSK blur system based on view weighting Experimental study Dataset Validity analysis Numerical analysis of deep feature extraction networks Conclusion References Chapter 7: Dementia diagnosis with EEG using machine learning Introduction Prevalence of dementia worldwide Electroencephalogram Cognitive testing and EEG Data acquisition Preprocessing of EEG signal Feature extraction Linear approach Nonlinear approach Classification of dementia Discussion Conclusion References Chapter 8: Computational methods for translational brain-behavior analysis Introduction Computational physiology Medical and data scientists Translational brain behavioral pattern Cognitive mapping and neural coding Neuroelectrophysiology modeling Clinical translation of cognitive mapping and neural coding Systems biology in translational and computational biology Application of system biology in translational brain tumor research Summary Conclusion References Chapter 9: Clinical applications of deep learning in neurology and its enhancements with future directions Introduction Medical data and artificial intelligence in neurology Neurology-centered medical system Clinical applications of artificial intelligence and deep learning Artificial intelligence for medical imaging and precision medicine Examples of neurology AI Challenges of deep learning applied to neuroimaging techniques AI for assessing response to targeted neurological therapies Conclusion and future perspectives References Chapter 10: Ensemble sparse intelligent mining techniques for cognitive disease Introduction Cognitive disease Machine learning and deep ensemble sparse regression network Intelligent medical diagnostics with ensemble sparse intelligent mining techniques High-dimensional data science in cognitive diseases Diagnostic challenges with artificial intelligence Summary Conclusion and future perspectives References Chapter 11: Cognitive therapy for brain diseases using deep learning models Introduction Brain diseases affecting cognitive functions Multimodal information Connectome mapping Post-operative seizure Gene signature Overview of deep learning techniques Data preprocessing techniques Early brain disease diagnosis using deep learning techniques Artificial intelligence and cognitive therapies and immunotherapies Summary Conclusion and future perspectives References Chapter 12: Cognitive therapy for brain diseases using artificial intelligence models Introduction Brain diseases Brain diseases and physiological signals Artificial intelligence Artificial intelligence, neuroscience, and clinical practice Data acquisition and image interpretation Artificial intelligence and cognitive behavioral therapy Challenges and pitfalls Summary Conclusion and future direction References Chapter 13: Clinical applications of deep learning in neurology and its enhancements with future predictions Introduction Neural network systems, biomarkers, and physiological signals Neurological techniques, biomedical informatics, and computational neurophysiology Neurological techniques Biomedical informatics Computational neurophysiology Data and image acquisition Artificial intelligence and deep learning Artificial intelligence and neurological disease prediction Non-clinical health-related applications Challenges and potential pitfalls of neurological techniques Conclusion and future directions References Chapter 14: An intelligent diagnostic approach for epileptic seizure detection and classification using machine learning Introduction Epileptic seizure Seizure localization Physiological and pathophysiological signals Chemical signals as physiological signals Endocrine disorders as deviations from physiological signals Neurotransmitter detection using artificial intelligence Electrical signals as physiological signals Action potentials Application of electrical signals Artificial intelligence and action potential detection Electrocorticography and electroencephalography Electroencephalography Electrocardiograph recording and placement Electroencephalography and other non-invasive techniques Applications of electroencephalography Electrocorticography Role of data scientists in epileptic seizure detection Intelligent diagnostic approaches: Machine learning and deep learning Selecting appropriate machine learning classifiers and features Summary Conclusion and future research References Chapter 15: Neural signaling and communication using machine learning Introduction Electrophysiology of brain waves Electrophysiology of alpha waves Electrophysiology of beta waves Electrophysiology of delta waves Electrophysiology of theta waves Electrophysiology of gamma waves Electrophysiology of mu waves Electrophysiology of sensorimotor rhythms Neural signaling and communication Neural signaling and communication Electrical signals as physiological signals Action potentials Application of electrical signals Brain-computer interface (data acquisition) Algorithm classification of brain functions using machine learning Artificial intelligence and neural signals, communications Challenges and opportunities Summary Conclusion and future perspectives References Chapter 16: Classification of neurodegenerative disorders using machine learning techniques Introduction Patient datasets Related medical examinations Clinical tests Biomarkers Clinical tests and biomarkers Classification of neurodegenerative diseases Machine learning techniques as computer-assisted diagnostic systems Multimodal analysis Conclusion and future perspectives References Chapter 17: New trends in deep learning for neuroimaging analysis and disease prediction Introduction Deep learning techniques Neuroimaging and data science Cognitive impairment Images, text, sounds, waves, biomarkers, and physiological signals Artificial intelligence and disease diagnosis and prediction Current challenges of heterogeneous multisite datasets and opportunities Summary Conclusion and future directions References Chapter 18: Prevention and diagnosis of neurodegenerative diseases using machine learning models Introduction Neurodegenerative diseases Artificial intelligence (AI) and machine learning (ML) AI and clinical practice Neurodegenerative diseases and physiological signals Neurodegenerative disease data acquisition Challenges in data handling Summary Conclusion and future perspectives References Chapter 19: Artificial intelligence-based early detection of neurological disease using noninvasive method based on speec ... Introduction Neurological disorders Cognitive analysis-Psychological evaluation and physiological signals Noninvasive screening methods for speech analysis Computer-aided diagnosis (CAD) systems Artificial intelligence and machine learning techniques Deep learning-based techniques Artificial intelligence and CAD systems for early detection of neurological disorders Summary Conclusion and future perspective References Chapter 20: An insight into applications of deep learning in neuroimaging Introduction Deep learning concepts Recurrent neural network (RNN) Convolutional neural network (CNN) Self-organizing map (SOM) Boltzmann machine (BM) Restricted Boltzmann machine (RBM) Autoencoder (AE) Neuroimaging Deep learning case studies in neurological disorders Alzheimer's disease (AD) Parkinson's disease (PD) Attention-deficit/hyperactive disorder (ADHD) Autism spectrum disorder (ASD) Schizophrenia analysis Dementia diagnosis Open-source tool kits for deep learning Challenges and future directions Conclusion References Chapter 21: Incremental variance learning-based ensemble classification model for neurological disorders Introduction Literature review Proposed incremental variance learning-based ensemble classification model for neurological disorders Discrete wavelet transform Result and comparison Conclusion and future scope References Chapter 22: A systematic review of adaptive machine learning techniques for early detection of Parkinson's disease Introduction Feature engineering for identifying clinical biomarkers Population-based metaheuristics for biomarker selection Application of machine learning methods for diagnosing PD Methodology and result analysis Characteristics of chaotic maps Proposed model Conclusion References Further Reading Index Back Cover