دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Rishabha Malviya, Naveen Chilamkurti, Sonali Sundram, Rajesh Kumar Dhanaraj, Balamurugan Balusamy سری: River Publishers Series in Biotechnology and Medical Research ISBN (شابک) : 8770227845, 9788770227841 ناشر: River Publishers سال نشر: 2023 تعداد صفحات: 430 [431] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Artificial Intelligence for Health 4.0: Challenges and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی برای سلامتی 4.0: چالش ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مراقبت های بهداشتی یکی از موفقیت های اصلی عصر ماست. علم پزشکی به سرعت پیشرفت کرده است و امید به زندگی را در سراسر جهان افزایش داده است. با این حال، با افزایش طول عمر، سیستم های مراقبت های بهداشتی با تقاضای فزاینده ای برای خدمات خود، افزایش هزینه ها، و نیروی کاری که برای برآوردن نیازهای بیماران خود در تلاش هستند، مواجه می شوند. مراقبتهای بهداشتی یکی از حیاتیترین بخشها در چشمانداز وسیعتر دادههای بزرگ است، زیرا نقش اساسی آن در یک جامعه مولد و پر رونق است. هوش مصنوعی (AI) با تکیه بر اتوماسیون، پتانسیل ایجاد انقلابی در مراقبت های بهداشتی و کمک به رفع برخی از چالش های ذکر شده در بالا را دارد. استفاده از هوش مصنوعی در داده های مراقبت های بهداشتی می تواند به معنای واقعی کلمه یک موضوع مرگ و زندگی باشد. هوش مصنوعی می تواند به پزشکان، پرستاران و سایر کارکنان مراقبت های بهداشتی در کار روزانه خود کمک کند. هوش مصنوعی در مراقبتهای بهداشتی میتواند مراقبتهای پیشگیرانه و کیفیت زندگی را افزایش دهد، تشخیصها و برنامههای درمانی دقیقتری ایجاد کند و در کل منجر به نتایج بهتری برای بیمار شود. این کتاب بینش هایی در مورد آخرین پیشرفت های کاربردهای هوش مصنوعی در زیست پزشکی، از جمله تشخیص بیماری، پردازش دارویی، مراقبت و نظارت بر بیمار، اطلاعات زیست پزشکی، و تحقیقات زیست پزشکی ارائه می دهد. همچنین یک طرح کلی از پیشرفتهای اخیر در کاربرد هوش مصنوعی در مراقبتهای بهداشتی را ارائه میکند، نقشهای را برای ساختن سیستمهای هوش مصنوعی مؤثر، قابل اعتماد و ایمن توصیف میکند و در مورد مسیر احتمالی آینده سیستمهای مراقبت بهداشتی تقویتشده هوش مصنوعی بحث میکند. هوش مصنوعی کاربردهای بی شماری در مراقبت های بهداشتی دارد. خواه برای کشف پیوندهای بین کدهای ژنتیکی، برای نیرو دادن به روباتهای جراحی یا حتی برای به حداکثر رساندن کارایی بیمارستان استفاده شود. هوش مصنوعی یک موهبت برای صنعت مراقبت های بهداشتی بوده است.
Healthcare is one of the major success stories of our times. Medical science has improved rapidly, raising life expectancy around the world. However, as longevity increases, healthcare systems face growing demands for their services, rising costs, and a workforce that is struggling to meet the needs of its patients. Healthcare is one of the most critical sectors in the broader landscape of big data because of its fundamental role in a productive, thriving society. Building on automation, artificial intelligence (AI) has the potential to revolutionize healthcare and help address some of the challenges set out above. The application of AI to healthcare data can literally be a matter of life and death. AI can assist doctors, nurses, and other healthcare workers in their daily work. AI in healthcare can enhance preventive care and quality of life, produce more accurate diagnoses and treatment plans, and lead to better patient outcomes overall. This book gives insights into the latest developments of applications of AI in biomedicine, including disease diagnostics, pharmaceutical processing, patient care and monitoring, biomedical information, and biomedical research. It also presents an outline of the recent breakthroughs in the application of AI in healthcare, describes a roadmap to building effective, reliable, and safe AI systems, and discusses the possible future direction of AI augmented healthcare systems. AI has countless applications in healthcare. Whether it’s being used to discover links between genetic codes, to power surgical robots or even to maximize hospital efficiency; AI has been a boon to the healthcare industry.
Cover Title Page Series Page Title Page Copyright Page Table of Contents Preface Acknowledgment List of Contributors List of Figures List of Tables List of Abbreviations Chapter 1: Healthcare 4.0: A Systematic Review and Its Impact Over Conventional Healthcare System 1.1: Introduction 1.1.1: Application scenarios of healthcare 4.0 1.1.2: The architecture of healthcare 4.0 1.1.3: Requirements and characteristics of healthcare 4.0 1.2: Evolution of Healthcare 1.3: Need of Healthcare 5.0 1.4: Advances in the Healthcare Industry 1.4.1: M-Healthcare 1.4.2: Healthcare data of patients 1.4.3: IoT and healthcare 1.4.4: Blockchain technology and healthcare 1.4.5: Big data analytics and healthcare 1.5: Telemedicine Services 1.5.1: Big data and IoT for healthcare 4.0 1.5.2: Blockchain and healthcare 4.0 1.5.3: AI and healthcare 4.0 1.5.4: Cyber–physical system and healthcare 4.0 1.5.5: Smart medical devices 1.6: Opportunities and Challenges Involved in Healthcare 1.7: Future Scope and Trends 1.8: Conclusion 1.9: Acknowledgment 1.10: Funding 1.11: Conflict of Interest References Chapter 2: Data Imaging, Clinical Studies, and Disease Diagnosis using Artificial Intelligence in Healthcare 2.1: Introduction 2.1.1: Classifications of artificial intelligence 2.1.1.1: Machine learning: Deep learning and neural network 2.1.1.2: Rule-based expert systems 2.1.1.3: Physical robots and software robotics 2.2: Machine Learning for Typical Biomedical Data Types 2.2.1: Data from multiple omics 2.2.2: Integration based on data 2.2.3: Incorporating models 2.2.4: Data on behavior 2.2.5: Data from video and conversations 2.2.6: Mobile sensor data 2.2.7: Data on the environment 2.2.8: Pharmaceutical research and development data 2.2.8.1: Chemical compounds 2.2.8.2: Clinical trials 2.2.9: Unintentional reports 2.2.10: Literature in biomedicine data 2.3: Application of AI 2.3.1: Biomedical information processing 2.3.2: AI for living support 2.3.3: Biomedical research 2.3.4: Medicine 2.3.5: Cancer and miscellaneous 2.4: Assessment of AI Applications in Healthcare 2.4.1: Phase 0 2.4.2: Phase 1 2.4.3: Phase 2 2.4.4: Phase 3 2.4.5: Phase 4 2.5: Artificial Intelligence’s Challenges in the Use of Pharmaceutical R&D Data 2.6: Future Directions for AI in Healthcare 2.6.1: Analytical integration 2.6.2: Transparency in models 2.6.3: Model security 2.6.4: Learning that is federated 2.6.5: Data errors 2.7: Conclusion 2.8: Acknowledgment 2.9: Funding 2.10: Conflicts of Interest References Chapter 3: Leveraging Artificial Intelligence in Patient Care 3.1: Introduction 3.2: Advancement in Artificial Intelligence 3.2.1: AI spring: artificial intelligence’s inception 3.2.2: AI summer and winter: Artificial intelligence’s highs and lows 3.2.3: AI’s fall: The harvest 3.2.4: The future: The importance of regulation 3.3: Artificial Intelligence’s Health Benefits 3.3.1: Advantages 3.4: Application 3.4.1: Cardiology 3.4.2: Applications of artificial intelligence in the medical field 3.4.3: Image and disease diagnosis using artificial intelligence 3.5: Recent Advancements in the Field of Artificial Intelligence 3.5.1: For medical imaging, the use of artificial intelligence is essential 3.5.2: Artificial intelligence science and technology 3.6: Artificial Intelligence and its Applications in Diagnostics 3.6.1: Sets of data 3.6.2: A medical image’s preprocessing 3.6.3: Optimization of models and parameters based on improved data 3.6.4: The principal component analysis (PCA) 3.6.5: Analyzing medical images using artificial intelligence 3.6.6: Imaging the brain via artificial intelligence 3.6.7: Chest imaging with artificial intelligence 3.6.8: In breast imaging, artificial intelligence is being used 3.6.9: The use of AI in cardiac imaging 3.6.10: Artificial intelligence in bone imaging 3.6.11: The use of Artificial Intelligence (AI) in stroke imaging 3.6.12: Using AI to treat diseases of the lungs 3.6.13: Artificial intelligence in the treatment of cancer 3.7: Conclusion 3.8: Acknowledgment 3.9: Funding 3.10: Conflicts of Interest References Chapter 4: Patient Monitoring Through Artificial Intelligence 4.1: Introduction 4.2: Purpose of Patient Monitoring 4.2.1: Patient monitoring involvement in today’s healthcare 4.2.2: Improving healthcare outcomes by using patient monitoring 4.3: Wearable Patient Monitoring Sensors 4.3.1: Wireless health monitoring specifications 4.3.2: Different types of sensors 4.4: Involvement of AI in Patient-Monitoring 4.4.1: Mobility aids the living environment 4.4.2: Clinical decision-making assistance 4.4.3: Smartphones, apps, sensors, and devices 4.4.4: Processing of text language 4.4.5: Healthcare applications of text processing technology 4.4.6: Using consumer technology to its full potential 4.4.7: AI’s function in diabetes forecasts and management 4.4.7.1: Apps and technologies for diabetes monitoring 4.5: AI-Assisted Monitoring of the Heart 4.5.1: AI in cardiology with virtual applications 4.5.2: Supporting system in clinical decisions 4.5.3: Augmented reality (AR), virtual reality (VR), and virtual assistants 4.5.4: Automated analysis with data 4.6: Neural Applications Linked to AI and Patient Monitoring 4.6.1: AI for dementia patients 4.6.2: Dementia monitoring 4.6.3: Supporting dementia patients 4.7: AI for Migraine Patients 4.8: Conclusion 4.9: Acknowledgment 4.10: Funding 4.11: Conflict of Interest References Chapter 5: Artificial Intelligence: A Promising Approach Toward Targeted Drug Therapy in Cancer Treatment 5.1: Introduction 5.2: AI, Machine Learning, and Deep Learning 5.3: Drug Development Process 5.3.1: Role of AI in chemotherapy 5.3.2: Role of AI in radiotherapy 5.3.3: Role of AI in cancer drug development 5.3.4: Role of AI in immunotherapy 5.4: Monoclonal Antibodies (mAbs) used in Cancer Treatment 5.5: MOA of mAbs 5.6: Future Prospects 5.7: Conclusion 5.8: Acknowledgment 5.9: Funding 5.10: Conflicts of Interest References Chapter 6: Artificial-Intelligence-Based Cloud Computing Techniques for Patient Data Management 6.1: Introduction of Artificial Intelligence Based Cloud Computing Techniques 6.2: Cloud Computing: A New Economic Computing Model 6.2.1: Infrastructure as a service (IaaS) 6.2.2: Platform as a service (PaaS) 6.2.3: Software as a service (SaaS) 6.3: The US National Institute of Standards and Technology (NIST) has Identified four Models for Cloud Computing Deployment 6.3.1: Public cloud 6.3.2: Community cloud 6.3.3: Private cloud 6.3.4: Hybrid cloud 6.4: Cloud Computing from the Perspective of Management, Security, Technology, and Legality 6.4.1: Management aspect 6.4.2: Technology aspect 6.4.3: Security aspect 6.4.4: Legal aspect 6.5: Cloud Computing Strategic Planning 6.5.1: Stage I – Identification 6.5.2: Stage II – Evaluation 6.5.3: Stage III – Action 6.5.3.1: Step 1: Determination of cloud service and deployment model 6.5.3.2: Step 2: Obtain confirmation from a chosen cloud provider 6.5.3.3: Step 3: Take consideration in migration of future data 6.5.3.4: Step 4: Start of implementation of pilot 6.5.4: Stage IV – Follow-up 6.6: Cloud Computing Research Utilization in Healthcare 6.6.1: Cloud computing in telemedicine/teleconsultation 6.6.2: Cloud computing in public health and patient self-management 6.6.3: Cloud computing in hospital management/clinical information systems 6.6.4: Cloud computing in therapy 6.6.5: Cloud computing in secondary use of data 6.7: Conclusion 6.8: Acknowledgment 6.9: Funding 6.10: Conflict of Interest References Chapter 7: Role of Artificial Intelligence and Robotics in Healthcare 7.1: Introduction 7.1.1: History of artificial intelligence 7.1.2: The need for AI 7.1.3: How did AI change the way medicine was practiced in the past? 7.1.4: Types of AI 7.2: AI in Healthcare 7.2.1: AI tool 7.2.2: Natural language processing 7.2.3: Machine learning 7.2.4: Algorithms 7.2.5: Artificial neural network 7.2.6: Support vector machine 7.2.7: Deep learning 7.3: Integrating AI into Healthcare Delivery 7.3.1: Patient monitoring 7.3.2: Disease diagnostics and prediction 7.3.3: Precision medicine 7.3.4: Drug discovery 7.3.5: Dermatology 7.3.6: Coronavirus 7.3.7: AI in ophthalmology 7.3.8: Design of the treatment 7.4: The Present State of AI and Its Future 7.4.1: Benefits 7.4.2: Difficulties of AI in healthcare 7.5: Role of Robotics in Modern Healthcare 7.5.1: Drug research and development 7.5.2: Dispensing in pharmacies 7.5.3: Logistics at the hospital 7.6: Robotic Healthcare Is More Advance than Conventional Dispensing 7.6.1: Increased effectiveness 7.6.2: Medical dispensing in an error-free environment 7.6.3: Pharmaceutical operations efficiency 7.6.4: Confidentiality 7.6.5: A toxin-free and secure setting 7.6.6: Advantages of robotics in healthcare systems 7.7: Acceptance and Implementation of Robots in the Healthcare Business 7.8: AI Robotics Emerging Together to Transform the Healthcare System 7.8.1: Error rates reduction 7.8.2: Improving the health of patients 7.8.3: Early detection 7.8.4: Improving decision-making 7.8.5: Research and development 7.8.6: Treatment 7.8.7: End-of-life care regeneration 7.9: Categories of AI Robotic Systems used in the Healthcare System 7.9.1: Assistants to surgeons 7.9.2: Pharmabiotics 7.9.3: Telehealthcare 7.9.4: Robotics with exoskeletons 7.9.5: Robots for cleaning and decontamination 7.10: Robotic Programming 7.11: Conclusion 7.12: Acknowledgment 7.13: Funding 7.14: Conflict of Interest References Chapter 8: Artificial Intelligence and Machine Learning Approach for Development and Discovery of Drug 8.1: Introduction 8.2: Tools of AI used to Emphasize Pharmacy 8.2.1: The robot pharmacy 8.2.2: The MEDi robot 8.2.3: The erica robot 8.2.4: The TUG robots 8.3: Applications 8.3.1: Modifying drug release 8.3.2: Product development 8.4: Benefits 8.5: AI-Integrated Medicine Development 8.6: Role of Active Learning and Machine Learning in Drug Discovery 8.7: Explainable AI 8.8: Computational Approaches for Explainable AI 8.8.1: Feature attribution 8.8.2: Instance-based approach 8.8.3: Graph convolution-based approach 8.8.4: Self-explaining 8.8.5: Uncertainty estimation 8.8.6: In silico molecular modeling 8.9: AI Networks and Associated Tools 8.9.1: AlphaFold 8.9.2: DeepChem 8.9.3: ODDT 8.9.4: Cyclica 8.9.5: DeepTox 8.9.6: Deep neural net QSAR 8.9.7: Organic 8.9.8: PotentialNet 8.9.10: Hit dexter 8.10: Technical Obstacles and Prospects 8.11: Conclusion 8.12: Acknowledgment 8.13: Funding 8.14: Conflicts of Interest References Chapter 9: Artificial Intelligence in Boosting the Development of Drug 9.1: Artificial Intelligence 9.2: Computer-Based Intelligence in the Lifecycle of Drug Items 9.3: Drug Development 9.4: The Drug Development Process 9.5: In Drug Discovery, Artificial Intelligence 9.6: Artificial Intelligence in Drug Screening 9.6.1: The expectation of the physicochemical properties 9.6.2: Forecast of bioactivity 9.6.3: Expectation of poisonousness 9.7: Artificial Intelligence in Planning Drug Particles 9.7.1: The expectation of the objective protein structure 9.7.2: Foreseeing drug-protein communications 9.8: Artificial Intelligence in Propelling Drug Item Advancement 9.9: Artificial Intelligence in Drug Fabricating 9.10: Artificial Intelligence in Quality Assurance and Control 9.11: Artificial Intelligence in a Clinical Trial Plan 9.12: Artificial Intelligence in Drug Item Execution 9.12.1: Artificial intelligence in market situating 9.12.2: Artificial intelligence in market expectation and investigation 9.13: Artificial Intelligence in the Item Cost 9.14: Conclusion 9.15: Acknowledgment 9.16: Funding 9.17: Conflict of Interest References Chapter 10: Artificial Intelligence in Medical Image Processing 10.1: Introduction 10.2: Magnetic Resonance Imaging (MRI) 10.2.1: Alzheimer’s disease (AD) 10.2.2: Skeletal issues 10.2.3: Brain illness diagnosis 10.2.4: Cancer and other disease analysis 10.3: Radiography-Based COVID-19 Diagnosis 10.3.1: ML-based approach 10.3.2: DNN algorithms for diagnosis 10.3.2.1: DNN and chest CT scan 10.3.2.2: DNN and chest X-ray 10.3.2.3: New DNN models on chest CT scan 10.3.2.4: New DNN models on chest X-ray 10.3.3: Transfer learning (TL) approach 10.3.3.1: Implementing TL approach on chest CT scan 10.3.3.2: Implementing TL approach on chest X-ray 10.3.3.3: Smartphone apps 10.4: Echocardiogram Analysis and Classification using AI 10.5: AI-Based Ultrasound Imaging Analysis 10.6: Conclusion 10.7: Acknowledgment 10.8: Funding 10.9: Conflict of Interest References Chapter 11: Advancement of AI in Cancer Management: Role of Big Data 11.1: Introduction 11.1.1: Big data 11.2: The Source and Type of Big Data, and Their Concern 11.2.1: The challenge of big data 11.3: Big Data Sources and Platforms 11.3.1: The national population-based cancer database 11.3.2: Commercial and private cancer databases 11.3.3: Cancer biological science and various “Omic” databases 11.4: Data Collection in Big Data for Oncology Treatment 11.4.1: Data management and aggregation in big data 11.4.2: The data sources for big data in medicine 11.5: Therapy Plan for Cancer 11.5.1: Big data will aid in the development of novel cancer therapies 11.5.2: A cancer treatment plan that is tailored to each patient 11.6: Big Data Powers the Design of “Smart” Cell Therapies for Cancer 11.6.1: Instructions are inserted into the cells 11.7: Future and Challenges of Big Data in Oncology 11.7.1: Challenges 11.8: Perspectives for the Future 11.9: Conclusion 11.10: Acknowledgment 11.11: Funding 11.12: Conflict of Interest References Chapter 12: Targeted Drug Delivery in Cancer Tissues by Utilizing Big Data Analytics: Promising Approach of AI 12.1: Introduction 12.2: Tools and Techniques for Targeted Drug Discovery and Delivery 12.2.1: Data sources available for drug discovery 12.2.2: Anticancer drug target discovery and validation 12.3: Sources of Big Data in Drug Discovery and Delivery 12.3.1: COSMIC-3D 12.3.2: The cancer genomic atlas 12.3.3: Gene expression omnibus (GEO) 12.3.4: Human protein atlas 12.4: Big Data Analytics 12.5: Future Prospects of “Big Data Analytics” 12.6: Challenges in the Field of “Big Data Analytics” 12.7: Conclusion 12.8: Acknowledgment 12.9: Funding 12.10: Conflict of Interest References Index About the Authors About the Editors