دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Mark Chang
سری: Chapman & Hall/Crc Biostatistics
ISBN (شابک) : 0367362929, 9780367362928
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 372
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 31 مگابایت
در صورت تبدیل فایل کتاب Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی برای توسعه دارو ، پزشکی دقیق و بهداشت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هوش مصنوعی برای توسعه دارو، پزشکی دقیق و مراقبتهای بهداشتی تحولات هیجانانگیزی را در تقاطع علم کامپیوتر و آمار پوشش میدهد. در حالی که بسیاری از یادگیری ماشینی مبتنی بر آمار است، دستاوردهای یادگیری عمیق برای پردازش تصویر و زبان به علم کامپیوتر متکی است.
Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare covers exciting developments at the intersection of computer science and statistics. While much of machine-learning is statistics-based, achievements in deep learning for image and language processing rely on computer science’s use of big data. Aimed at those with a statistical background who want to use their strengths in pursuing AI research, the book:
· Covers broad AI topics in drug development, precision medicine, and healthcare.
· Elaborates on supervised, unsupervised, reinforcement, and evolutionary learning methods.
· Introduces the similarity principle and related AI methods for both big and small data problems.
· Offers a balance of statistical and algorithm-based approaches to AI.
· Provides examples and real-world applications with hands-on R code.
· Suggests the path forward for AI in medicine and artificial general intelligence.
As well as covering the history of AI and the innovative ideas, methodologies and software implementation of the field, the book offers a comprehensive review of AI applications in medical sciences. In addition, readers will benefit from hands on exercises, with included R code.
Cover Half Title Title Page Copyright Page Table of Contents Preface 1: Overview of Modern Artificial Intelligence 1.1 Brief History of Artificial Intelligence 1.2 Waves of Artificial Intelligence 1.2.1 First Wave: Logic-Based Handcrafted Knowledge 1.2.2 Second Wave: Statistical Machine Learning 1.2.3 Third Wave: Contextual Adaptation 1.2.4 The Last Wave: Artificial General Intelligence 1.3 Machine Learning Methods 1.3.1 Data Science 1.3.2 Supervised Learning: Classification and Regression 1.3.3 Unsupervised Learning: Clustering and Association 1.3.4 Reinforcement Learning 1.3.5 Swarm Intelligence 1.3.6 Evolutionary Learning 1.4 Summary 1.5 Problems 2: Classical Statistics and Modern Machine Learning 2.1 Essentials for Medical Data Scientists 2.1.1 Structured and Unstructured Data 2.1.2 Random Variation and Its Causes 2.1.3 Internal and External Validities 2.1.4 Placebo and Nocebo Effects 2.1.5 Bias, Bias, and Bias 2.1.6 Confounding Factors 2.1.7 Regression to the Mean 2.2 Revolutionary Ideas of Modern Clinical Trials 2.2.1 Innovative and Adaptive Development Program 2.2.2 Control, Blinding, and Randomization 2.3 Hypothesis Test and Modeling in Classic Statistics 2.3.1 Statistical Hypothesis Testing 2.3.2 Generalized Linear Model 2.3.3 Air Quality Analysis with Generalized Linear Model 2.3.4 Lung Cancer Survival Analysis with Cox's Model 2.3.5 Propensity Score Matching 2.4 Model Selection in Machine Learning 2.4.1 Decision Approach 2.4.2 Regularization 2.4.3 Subset Selection 2.4.4 Real-World Examples 2.5 Process to Apply Machine Learning to Data 2.5.1 General Steps in Applying Machine Learning 2.5.2 Cross-Validation 2.6 Summary 2.7 Problems 3: Similarity Principle|The Fundamental Principle of All Sciences 3.1 Scientific Paradoxes Call for a New Approach 3.1.1 Dilemma of Totality Evidence with p-Value 3.1.2 Multiple-Testing Versus Multiple-Learning 3.1.3 A Medical and Judicial Tragedy 3.1.4 Simpson's Paradox 3.1.5 Bias in Predicting Drug Effectiveness 3.2 The Similarity Principle 3.2.1 Role of Similarity Principle 3.2.2 The Root of Causality 3.3 Similarity Measures 3.3.1 Attributes Selection 3.3.2 Similarity Properties 3.3.3 Cosine Similarity and Jaccard Index 3.3.4 Distance-Based Similarity Function 3.3.5 Similarity and Dissimilarity of String and Signal Data 3.3.6 Similarity and Dissimilarity for Images and Colors 3.3.7 Similarix 3.3.8 Adjacency Matrix of Network 3.3.9 Biological and Medical Similarices 3.4 Summary 3.5 Problems 4: Similarity-Based Artificial Intelligence 4.1 Similarity-Based Machine Learning 4.1.1 Nearest-Neighbors Method for Supervised Learning 4.1.2 Similarity-Based Learning 4.1.3 Similarity Measures 4.1.4 Algorithms for SBML 4.1.5 Prediction Error Decomposition 4.1.6 Training, Validation, and Test Datasets 4.2 Regularization and Cross-Validation 4.2.1 Learning|Updating Attribute-Scaling Factors 4.2.2 Loss Function 4.2.3 Computer Implementation 4.3 Case Studies 4.4 Different Outcome Variables 4.5 Further Development of Similarity-Based AI Approach 4.5.1 Repeated Measures 4.5.2 Missing Data Handling 4.5.3 Multiple Outcomes 4.5.4 Sequential Similarity-Based Learning 4.5.5 Ensemble Methods and Collective Intelligence 4.5.6 Generalized SBML 4.5.7 Dimension Reduction 4.5.8 Recursive SBML 4.6 Similarity Principle, Filtering, and Convolution 4.7 Summary 4.8 Problems 5: Artificial Neural Networks 5.1 Hebb's Rule and McCulloch-Pitts Neuronal Model 5.2 The Perceptron 5.2.1 Model Construction 5.2.2 Perceptron Learning 5.2.3 Linear Separability 5.3 Multiple-Layer Perceptron for Deep Learning 5.3.1 Model Construction 5.3.2 Gradient Method 5.4 Artificial Neural Network with R 5.4.1 ANN for Infertility Modeling 5.4.2 Feedforward Network with Karasr Package 5.4.3 MNIST Handwritten Digits Recognition 5.5 Summary 5.6 Problems 6: Deep Learning Neural Networks 6.1 Deep Learning and Software Packages 6.2 Convolutional Neural Network for Deep Learning 6.2.1 Ideas Behind CNN 6.2.2 Network Scalability Problem 6.2.3 Deep Learning Architecture 6.2.4 Illustration of CNN with Example 6.2.5 CNN for Medical Image Analysis 6.2.6 A CNN for Handwritten Digits Recognition 6.2.7 Training CNN Using Keras in R 6.3 Recurrent Neural Networks 6.3.1 Short-Term Memory Network 6.3.2 An Example of RNN in R 6.3.3 Long Short-Term Memory Networks 6.3.4 Sentiment Analysis Using LSTMs in R 6.3.5 Applications of LSTMs in Molecular Design 6.4 Deep Belief Networks 6.4.1 Restricted Boltzmann machine 6.4.2 Application of Deep Belief Networks 6.5 Generative Adversarial Networks 6.6 Autoencoders 6.7 Summary 6.8 Problems 7: Kernel Methods 7.1 Subject Representation Using Kernels 7.2 Prediction as Weighted Kernels 7.3 Support Vector Machine 7.3.1 Hard-Margin Model 7.3.2 Soft-Margin Model 7.3.3 R Program for Support Vector Machine 7.4 Feature and Kernel Selections 7.5 Application of Kernel Methods 7.6 Dual Representations 7.7 Summary 7.8 Problems 8: Decision Tree and Ensemble Methods 8.1 Classification Tree 8.2 Regression Tree 8.3 Bagging and Boosting 8.4 Random Forests 8.5 Summary 8.6 Problems 9: Bayesian Learning Approach 9.1 Bayesian Paradigms 9.2 Bayesian Networks 9.2.1 Bayesian Network for Molecular Similarity Search 9.2.2 Coronary Heart Disease with Bayesian Network 9.3 Bayesian Inference 9.3.1 Basic Formulations 9.3.2 Preclinical Study of Fluoxetine on Time Immobile 9.4 Model Selection 9.5 Hierarchical Model 9.6 Bayesian Decision-Making 9.7 Summary and Discussion 9.8 Problems 10: Unsupervised Learning 10.1 Needs of Unsupervised Learning 10.2 Association or Link Analysis 10.3 Principal Components Analysis 10.4 K-Means Clustering 10.5 Hierarchical Clustering 10.6 Self-Organizing Maps 10.7 Network Clustering and Modularity 10.8 Unsupervised to Supervised Learning 10.9 Summary 10.10 Problems 11: Reinforcement Learning 11.1 Introduction 11.2 Sequential Decision-Making 11.2.1 Descriptive and Normative Decision-Making 11.2.2 Markov Chain 11.2.3 Markov Decision Process 11.2.4 Dynamic Programming 11.3 Pharmaceutial Decision Process 11.3.1 Model for Clinical Development Program 11.3.2 Markov Decision Tree and Out-Licensing 11.4 Q-Learning 11.5 Bayesian Stochastic Decision Process 11.6 Partially Observable Markov Decision Processes 11.7 Summary 11.8 Problems 12: Swarm and Evolutionary Intelligence 12.1 Swarm Intelligence|Artificial Ants 12.1.1 Artificial Swarm Intelligence 12.1.2 Applications 12.2 Evolutionary Intelligence 12.2.1 Genetic Algorithm 12.2.2 Genetic Algorithm for Infertility 12.2.3 Genetic Programming 12.2.4 Application 12.3 Cellular Automata 12.4 Summary 12.5 Problems 13: Applications of AI in Medical Science and Drug Development 13.1 AI for QSARs in Drug Discovery 13.1.1 Deep Learning Networks 13.1.2 Network Similarity-Based Machine Learning 13.1.3 Kernel Method and SVMs 13.1.4 Decision-Tree Method 13.1.5 Other AI Methods 13.1.6 Comparisons with Different Methods 13.2 AI in Cancer Prediction Using Microarray Data 13.2.1 Cancer Detection from Gene Expression Data 13.2.2 Feature Selection 13.2.3 Cancer Prediction 13.2.4 Clustering 13.3 Deep Learning for Medical Image Analysis 13.3.1 Deep Learning for Medical Image Processing 13.3.2 Deep Learning Methods in Mammography 13.3.3 Deep Learning for Cardiological Image Analysis 13.4 AI in Healthcare 13.4.1 Paradigm Shift 13.4.2 Disease Diagnosis and Prognosis 13.4.3 Natural Language Processing in Medical Records 13.5 AI for Clinical Trial and Drug Safety Monitoring 13.5.1 Necessary Paradigm Shift in Clinical Trials 13.5.2 Learning Paradigms 13.5.3 AI in Pharmacovigilance 13.6 Summary 14: Future Perspectives—Artificial General Intelligence 15: Appendix 15.1 Data for Learning Artificial Intelligence 15.2 AI Software Packages 15.3 Derivatives of Similarity Functions 15.4 Derivation of Backpropagation Algorithms for ANN 15.5 Similarity-Based Machine Learning in R Bibliography Index