ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Artificial Intelligence for Cloud and Edge Computing

دانلود کتاب هوش مصنوعی برای محاسبات ابری و لبه

Artificial Intelligence for Cloud and Edge Computing

مشخصات کتاب

Artificial Intelligence for Cloud and Edge Computing

ویرایش:  
نویسندگان: , , ,   
سری: Internet of Things 
ISBN (شابک) : 3030808203, 9783030808204 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 364
[358] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 48,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Artificial Intelligence for Cloud and Edge Computing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب هوش مصنوعی برای محاسبات ابری و لبه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب هوش مصنوعی برای محاسبات ابری و لبه



این کتاب در مورد احتمالات آینده هوش مصنوعی با محاسبات ابری و محاسبات لبه بحث می کند. هدف اصلی این کتاب انجام تجزیه و تحلیل، پیاده سازی و بحث در مورد بسیاری از ابزارها (هوش مصنوعی، یادگیری ماشین و یادگیری عمیق و محاسبات ابری، محاسبات مه، و محاسبات لبه از جمله مفاهیم امنیت سایبری) برای درک یکپارچگی این فناوری ها است. با استفاده از این کتاب، خوانندگان می توانند به سرعت مروری بر این موضوعات نوظهور داشته باشند و ایده های بسیاری از آینده هوش مصنوعی با ابر، لبه، و در بسیاری از زمینه های دیگر دریافت کنند. موضوعات شامل تکنیک های یادگیری ماشینی و عمیق برای سیستم های ابری مبتنی بر اینترنت اشیا است. مسائل مربوط به امنیت، حریم خصوصی و اعتماد در سیستم های ابری مبتنی بر هوش مصنوعی و سیستم های ابری مبتنی بر اینترنت اشیا؛ هوش مصنوعی برای ذخیره سازی داده های هوشمند در اینترنت اشیاء مبتنی بر ابر؛ راه‌حل‌های مبتنی بر بلاک چین برای سیستم‌های ابری مبتنی بر هوش مصنوعی و سیستم‌های ابری مبتنی بر اینترنت اشیا. این کتاب برای محققان، دانشگاهیان، دانشجویان و متخصصان مرتبط است.


توضیحاتی درمورد کتاب به خارجی

This book discusses the future possibilities of AI with cloud computing and edge computing. The main goal of this book is to conduct analyses, implementation and discussion of many tools (of artificial intelligence, machine learning and deep learning and cloud computing, fog computing, and edge computing including concepts of cyber security) for understanding integration of these technologies. With this book, readers can quickly get an overview of these emerging topics and get many ideas of the future of AI with cloud, edge, and in many other areas. Topics include machine and deep learning techniques for Internet of Things based cloud systems; security, privacy and trust issues in AI based cloud and IoT based cloud systems; AI for smart data storage in cloud-based IoT; blockchain based solutions for AI based cloud and IoT based cloud systems.This book is relevent to researchers, academics, students, and professionals.



فهرست مطالب

Preface
Contents
Editors' Biography
An Optimization View to the Design of Edge Computing Infrastructures for IoT Applications
	1 Introduction
	2 IoT Applications: Classification and Challenges
		2.1 A Classification by Field of Application
			2.1.1 Automotive
			2.1.2 Industry 4.0
			2.1.3 E-Health
			2.1.4 Smart Cities Applications
			2.1.5 Retail
			2.1.6 Smart Agriculture
		2.2 Challenges of IoT Applications
	3 Literature Review
	4 Performance Modeling in Edge Computing Infrastructures
		4.1 Efficiency Metrics
		4.2 Performance Metrics
	5 Problem Formulation
		5.1 Model Parameters
		5.2 Objective Functions and SLA
		5.3 Optimization Problem
	6 Heuristics
		6.1 Variable Neighborhood Search
		6.2 Genetic Algorithm
			6.2.1 Problem Definition
			6.2.2 Chromosome Encoding
			6.2.3 Genetic Operators
	7 Experimental Evaluation
		7.1 Experimental Scenario
		7.2 Experimental Results
	8 Conclusion and Future Work
	References
AIOps: A Multivocal Literature Review
	1 Introduction
	2 Background
		2.1 Artificial Intelligence
		2.2 Artificial Intelligence for IT Operations (AIOps)
	3 Research Methodology
		3.1 Research Questions
		3.2 Search Strategy
	4 Results
		4.1 Trends
		4.2 Definition of AIOps (RQ1)
		4.3 Benefits of AIOps (RQ2)
		4.4 Challenges of AIOps (RQ3)
		4.5 Limitations and Potential Threat to Validity
	5 Conclusions and Future Work
	A.1 Appendix A: List of Sources Included in the MLR
	References
Deep Learning-Based Facial Recognition on Hybrid Architecture for Financial Services
	1 Introduction
	2 Related Work
		2.1 Facial Recognition
		2.2 Edge–Cloud Computing
	3 Methods
		3.1 Facial Recognition Methods
		3.2 Hybrid Architecture
	4 Experimental Results
	5 Conclusion
	References
Classification of Swine Disease Using K-Nearest Neighbor Algorithm on Cloud-Based Framework
	1 Introduction
	2 Background and Literature Review
		2.1 Related Works
	3 Materials and Methods
		3.1 Collection of Datasets
		3.2 Proposed Algorithm
		3.3 Cloud Platform
	4 Results and Discussion
		4.1 Home Page Interface
		4.2 List of Diseases
		4.3 Symptoms List
		4.4 Treatment
	5 Conclusion and Future Works
	References
Privacy and Trust Models for Cloud-Based EHRs Using Multilevel Cryptography and Artificial Intelligence
	1 Introduction
	2 Related Works
		2.1 Review of Selected Related Research Works
	3 The Security/Privacy Mechanism
		3.1 The Privacy Model
			3.1.1 The Advanced Encryption Standard (AES)
			3.1.2 The Elliptic Curve Cryptography (ECC)
		3.2 The Access Control Aspect of the Security Mechanism
	4 The Trust Architecture
		4.1 Trust Concept
		4.2 Managing Trust
		4.3 The Trust Management Procedure (TMP)
	5 The Proposed System Design Methodology
	6 Results and Discussions
		6.1 Performance Evaluation of the Proposed EHR System
		6.2 Comparison of the Proposed System and Existing Works as per Trust
	7 Conclusion and Future Work
	References
Utilizing an Agent-Based Auction Protocol for Resource Allocation and Load Balancing in Grid Computing
	1 Introduction
	2 Distributed Artificial Intelligence
		2.1 Benefits of Artificial Intelligence Load Balancing in Grid Computing
	3 Related Works
	4 Using Auction Model for Design: A Load Balancing System Based on Artificial Intelligence in Grid Computing
	5 Artificial Intelligent Agents Interactions
	6 Experimental Environment
		6.1 System Implementation
		6.2 Simulated Parameters
	7 Performance Evaluation
	8 Conclusion and Future Works
	References
Optimization Model of Smartphone and Smart Watch Based on Multi Level of Elitism (OMSPW-MLE)
	1 Introduction
	2 Complex Network
		2.1 Characterizing Networks
	3 Design OMSPW-MLE
		3.1 Main Stage of OMSPW-MLE
			3.1.1 Data Collection and Preprocessing Stage
			3.1.2 Apply Deterministic Selection Algorithm (Dselect)
			3.1.3 Apply Ant Lion Optimization Algorithm (ALO)
	4 Results and Analysis
		4.1 Implementation OMSPW-MLI Stages
			4.1.1 Description of Database
			4.1.2 Draw Network
			4.1.3 The Results of Dselect Algorithm
			4.1.4 Results of ALO Algorithm
			4.1.5 Evaluation
	5 Discussion
	6 Conclusions and Recommendation of Future Works
	References
K-Nearest Neighbour Algorithm for Classification of IoT-Based Edge Computing Device
	1 Introduction
	2 Background and Literature Review
		2.1 Related Works
	3 Materials and Methods
		3.1 Datasets
		3.2 K-Nearest Neighbor (KNN) Algorithm
	4 Result and Discussion
		4.1 System Evaluation
		4.2 System Comparison
		4.3 Discussion
	5 Conclusion
	References
Big Data Analytics of IoT-Based Cloud System Framework: Smart Healthcare Monitoring Systems
	1 Introduction
	2 Internet of Things in Healthcare System
	3 The Edge Computing and Artificial Intelligence in Healthcare System
	4 Internet of Things and Big Data Analytics
	5 Related Work
	6 The Architecture of Big Data Analytics of IoT-Based Cloud Healthcare Monitoring System
		6.1 The Flowchart of the Proposed System
		6.2 The Architecture of the Healthcare Monitoring System
		6.3 The Data Generation Layer
		6.4 Data Processing
		6.5 Application and Monitoring Management Layer
	7 Results and Discussions
	8 Conclusion and Future Research Direction
	References
Genetic Algorithm-Based Pseudo Random Number Generation for Cloud Security
	1 Introduction
	2 Background and Related Work
	3 Proposed System
		3.1 Hybrid Model with a Combination of a Genetic Algorithm and LFSR
			3.1.1 Algorithm for Generating Pseudo-Random Numbers
			3.1.2 Design of LFSR
			3.1.3 Genetic Algorithm (GA)
		3.2 CloudSim
		3.3 Proposed Hybrid Model Design
		3.4 Key Sequence Generated Using GA
		3.5 Statistical Test Results of Hybrid Model PRNG
			3.5.1 Maximum Length
			3.5.2 Test for Uniformity
			3.5.3 Test for Independency/Autocorrelation
			3.5.4 Run Test
	4 Implementatıon Detaıls
		4.1 Employment of Hybrid Model for the Encryption of Image Data over the Cloud System
	5 Result Analysis of the Cipher System Based on Security Parameters
		5.1 Security Constraints
			5.1.1 Computation of Standard Deviation on the Occurrence of Ciphertext Elements
			5.1.2 Entropy Computation of Elements of Ciphertext
		5.2 Result Analysis of the Cipher System Based on Security Constraints
	6 Conclusions and Future Scope
	References
Anomaly Detection in IoT Using Machine Learning
	1 Introduction
	2 Literature Review
	3 Methodology
		3.1 Proposed Model
		3.2 Hardware Setup
		3.3 Data Preparation
		3.4 Labelling Data
	4 Algorithm Implementation and Parameter Tuning
		4.1 SVM Implementation
		4.2 Decision Tree Implementation
		4.3 K Nearest Neighbor Implementation
		4.4 Random Forest Implementation
		4.5 Logistic Regression Implementation
	5 Result and Analyses
		5.1 Accuracy and Relative Time to Run for Each Model
		5.2 Confusion Matrices of Each Model
		5.3 Area of ROC Curve for Each Model
	6 Conclusion and Future Work
	References
System Level Knowledge Representation for Edge Intelligence
	1 Introduction
	2 Background
	3 AI as a Spectrum
	4 Complexity in Edge Intelligence
		4.1 Seeing the Fog for the Cloud
		4.2 Networks of Things and People
		4.3 Sensors
		4.4 Interfaces
		4.5 The Sensor Mesh
		4.6 Selection Automation
		4.7 Physical Transport Layer
		4.8 Real-Time Data Streams
		4.9 Personal Storage Devices and the Privacy Layer
	5 The Role of KR in IoT
		5.1 KR to Capture Complexity
		5.2 The Knowledge System Level
		5.3 System Level KR as an Object (KRO)
		5.4 Model Validation
	6 Conclusion
	References
AI-Based Enhanced Time Cost-Effective Cloud Workflow Scheduling
	1 Introduction
	2 Problem Description
		2.1 Summary of the Mathematical Model – From [10]
		2.2 Summary of Definitions – From [10]
	3 QoS-Based Pricing Plan
	4 Scheduling Algorithms
		4.1 Versatile Time-Cost Algorithm (VTCA)
		4.2 AI-Based Time-Constrained Early-Deadline Cost-Effective Algorithm (TECA)
	5 Experimental Analysis
	6 Conclusions
	References
AI-JasCon: An Artificial Intelligent Containerization System for Bayesian Fraud Determination in Complex Networks
	1 Introduction
	2 Literature Review
		2.1 Existing Research Efforts
		2.2 Limitations of Exiting Systems
	3 Fraud Detection System Model
	4 System Implementation
	5 System Design and Implementation
	6 Conclusion
	References
Performance Improvement of Intrusion Detection System for Detecting Attacks on Internet of Things and Edge of Things
	1 Introduction
	2 Related Work
	3 Materials and Methodology
		3.1 Data Preprocessing
		3.2 Normalization Technique
		3.3 Feature Selection
		3.4 Principal Component Analysis
		3.5 K-Nearest-Neighbor
		3.6 Decision Tree
		3.7 Gradient Boosting Machine
		3.8 Extreme Gradient Machine
		3.9 Light Gradient Machine
	4 Results and Discussion
		4.1 Evaluation Dataset
		4.2 Performance Metrics of the Models on Sixfold Cross-Validation
		4.3 Performance Metrics of the Models on Tenfold Cross-Validation
		4.4 Comparison of the Proposed Models Utilizing Sixfold Cross-Validation with the State-of-the-Art Methods
		4.5 Comparison of the Proposed Models Utilizing Tenfold Cross-Validation with the State-of-the-Art Techniques
	5 Conclusion and Future Work
	References
Index




نظرات کاربران