دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Narendra D Londhe, Anil Kumar, Mitul Kumar Ahirwal (editor) سری: ISBN (شابک) : 1032148462, 9781032148465 ناشر: CRC Pr I Llc سال نشر: 2022 تعداد صفحات: 312 [333] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 44 Mb
در صورت تبدیل فایل کتاب Artificial Intelligence Applications for Health Care به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربردهای هوش مصنوعی برای مراقبت های بهداشتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب با پوشش موضوعاتی در مورد مراقبت های بهداشتی و هوش مصنوعی رویکردی بین رشته ای دارد. مجموعه داده های مربوط به سیگنال های زیست پزشکی (ECG، EEG، EMG) و تصاویر (اشعه ایکس، MRI، CT) از طریق روش های مختلف هوش محاسباتی کاوش، تجزیه و تحلیل و پردازش می شوند. کاربردهای تکنیکهای هوش محاسباتی مانند شبکههای عصبی مصنوعی و عمیق، بهینهسازی ازدحام، سیستمهای خبره، سیستمهای پشتیبانی تصمیم، خوشهبندی و تکنیکهای طبقهبندی در مجموعه دادههای میانی توضیح داده شدهاند. بررسی سیگنالهای پزشکی، تصاویر داخلی و روشهای هوش محاسباتی نیز در این کتاب ارائه شده است.
ویژگیهای کلیدی
این کتاب برای محققان و دانشجویان فارغ التحصیل در زمینه پردازش سیگنال و تصویر پزشکی، یادگیری ماشینی و عمیق، و فناوریهای مراقبتهای بهداشتی طراحی شده است.
This book takes an interdisciplinary approach by covering topics on health care and artificial intelligence. Data sets related to biomedical signals (ECG, EEG, EMG) and images (X-rays, MRI, CT) are explored, analyzed, and processed through different computation intelligence methods. Applications of computational intelligence techniques like artificial and deep neural networks, swarm optimization, expert systems, decision support systems, clustering, and classification techniques on medial datasets are explained. Survey of medical signals, medial images, and computation intelligence methods are also provided in this book.
Key Features
This book is aimed at researchers and graduate students in medical signal and image processing, machine and deep learning, and healthcare technologies.
Cover Half Title Title Page Copyright Page Dedication Contents Foreword Preface Acknowledgement Editors Biographies Contributors 1. A Survey of Machine Learning in Healthcare 1.1 Introduction 1.2 Artificial Intelligence 1.2.1 Machine Learning 1.2.1.1 Steps in Developing an ML System 1.2.1.2 Types of Machine Learning 1.2.2 Deep Learning 1.2.3 The Major Types of DL 1.3 Applications of ML in Healthcare 1.3.1 Cardiovascular Diseases 1.3.2 Medical Imaging 1.3.3 Drug Discovery/Manufacturing 1.3.4 Electronic Health Records 1.3.5 Clinical Decision Support System 1.3.6 Surgical Robotics 1.3.7 Precision Medicine 1.3.8 Population Health Management 1.3.9 mHealth and Smart Devices 1.3.10 AI for Tackling Pandemic 1.4 ML Use Cases in Healthcare 1.5 Limitations and Challenges in Adoption of AI in Healthcare 1.6 Conclusion Acknowledgements References 2. A Review on Biomedical Signals with Fundamentals of Digital Signal Processing 2.1 Introduction 2.2 Biomedical Signals 2.2.1 Electrocardiogram (ECG) Signal 2.2.1.1 ECG Terminology and Recording 2.2.1.2 Different Types of Recording Techniques 2.2.1.3 ECG Processing 2.2.1.4 Common Problems 2.2.1.5 Common ECG Applications 2.2.1.5.1 Review of Recent and New Applications of ECG 2.2.2 Electroencephalogram (EEG) Signal 2.2.2.1 Basic Terminology and Recording 2.2.2.2 Types of EEG Signals 2.2.2.3 EEG Processing 2.2.2.4 Common Problems 2.2.2.5 EEG Applications 2.2.3 Electromyography (EMG) 2.2.3.1 EMG Signal Recording 2.2.3.2 EMG Signal Processing 2.2.3.3 Common Problems 2.2.3.4 EMG Applications 2.2.4 Electro-Oculogram (EOG) 2.2.4.1 EOG Signal Recording 2.2.4.2 EOG Processing 2.2.4.3 Common Problems 2.2.4.4 Applications of EOG Signal References 3. Images in Radiology: Concepts of Image Acquisition and the Nature of Images 3.1 Introduction 3.2 Radiography 3.3 Ultrasonography 3.4 Computed Tomography 3.4.1 Noncontrast and Contrast-Enhanced CT 3.4.2 High-Resolution CT 3.4.3 CT Angiography/Venography 3.4.4 Cardiac CT/Coronary CT Angiography 3.4.5 CT Perfusion 3.5 Magnetic Resonance Imaging (MRI) 3.5.1 Contrast-Enhanced MRI 3.5.2 MRI Perfusion 3.5.3 MR Spectroscopy 3.5.4 Diffusion-Weighted and Diffusion Tensor MRI 3.5.5 Cardiac MRI 3.6 Digital Subtraction Angiography 3.7 Conclusion References 4. Fundamentals of Artificial Intelligence and Computational Intelligence Techniques with Their Applications in Healthcare Systems 4.1 Introduction 4.2 Healthcare Data 4.2.1 Clinical Data 4.2.1.1 Image Data 4.2.1.2 Signal Data 4.2.2 Omics Data 4.2.2.1 Genomic Data 4.2.2.2 Transcriptomic Data 4.2.2.3 Proteomic Data 4.3 Diseases Targeted by AI 4.4 Computational Intelligence Techniques and Their Applications 4.4.1 Artificial Neural Network 4.4.2 Evolutionary Computation 4.4.3 Fuzzy Systems 4.5 No-Code AI Tools 4.6 Performance Parameters 4.7 Challenges 4.8 Conclusion References 5. Machine Learning Approach with Data Normalization Technique for Early Stage Detection of Hypothyroidism 5.1 Introduction 5.1.1 Related Work 5.2 Material and Methods 5.2.1 System Framework 5.2.2 Hypothyroid Disease (HD) Dataset 5.2.3 Min-Max Scaler Technique 5.2.4 ML Classifiers 5.2.5 Performance Measures 5.3 Results 5.4 Discussions 5.5 Conclusion References 6. GPU-based Medical Image Segmentation: Brain MRI Analysis Using 3D Slicer 6.1 Introduction 6.2 Related Works 6.3 Image Segmentation Techniques 6.3.1 Seeded Region Growing 6.3.2 Watershed 6.3.3 Level Set Approaches/Methods 6.3.4 Active Contours 6.4 GPU Segmentation Demonstration: NVIDIA AIAA 6.5 Conclusion References 7. Preliminary Study of Retinal Lesions Classification on Retinal Fundus Images for the Diagnosis of Retinal Diseases 7.1 Introduction 7.2 Retinal Imaging Modalities 7.3 Fundus Imaging 7.3.1 Fundus Image Formation 7.4 Eye Anatomy and Retinal Diseases 7.4.1 Normal Retina 7.4.2 Retinal Lesions Associated with Various Retinal Diseases 7.4.2.1 Dark Lesions 7.4.2.2 Microaneurysms 7.4.2.3 Haemorrhages 7.4.2.4 Bright Lesions 7.4.2.5 Exudates 7.4.2.6 Cotton Wool Spots 7.5 Need and Challenges in Computer Aided Retinal Diseases Detection Method 7.6 Need and Challenges in Retinal Image Enhancement 7.7 Need and Challenges in Characterization of Anatomical Structures and Lesions 7.7.1 Segmentation of Retinal Blood Vasculature 7.7.2 Detection of Optic Disk 7.7.3 Segmentation of Retinal Lesions 7.8 Need and Challenges in Computer Aided Classification and Grading Method 7.9 Conclusion References 8. Automatic Screening of COVID-19 Based on CT Scan Images Through Extreme Gradient Boosting 8.1 Introduction 8.2 Methodology 8.2.1 Traditional Methods 8.2.2 Proposed Method 8.2.2.1 Histogram of Oriented Gradients (HOG) Features 8.2.2.2 Local Binary Pattern (LBP) Features 8.2.2.3 KAZE Features 8.2.2.4 SIFT Features 8.2.2.5 Speeded Up Robust Features (SURF) 8.2.2.6 Normalization 8.2.2.7 Principal Component Analysis (PCA) 8.2.3 Datasets Used 8.2.4 Experiments Performed 8.2.4.1 Adaboost 8.2.4.2 Bagging 8.2.4.3 k-Nearest Neighbor 8.2.4.4 Naïve Bayesian Classification 8.2.4.5 Random Forest 8.2.4.6 Support Vector Machine (SVM) 8.2.4.7 Extreme Gradient Boosting (XGB) 8.3 Results 8.3.1 Comparative Study 8.4 Conclusion and Future Works References 9. Investigations on Convolutional Neural Network in Classification of the Chest X-Ray Images for COVID-19 and Pneumonia 9.1 Introduction 9.2 Dataset and Processing 9.3 Methodology 9.4 Results 9.5 Conclusion References 10. Improving the Detection of Abdominal and Mediastinal Lymph Nodes in CT Images Using Attention U-Net Based Deep Learning Model 10.1 Introduction 10.2 Methodology 10.2.1 Dataset Details 10.3 Training Configuration and Experimental Setup 10.4 Results 10.5 Discussions 10.6 Conclusion and Future Work 10.7 Future Work References 11. Swarm Optimized Hybrid Layer Decomposition and Reconstruction Model for Multi-Modal Neurological Image Fusion 11.1 Introduction 11.2 Methodology 11.2.1 Hybrid Layer Decomposition 11.2.2 Whale Optimization Algorithm 11.2.3 Proposed Method 11.2.4 Dataset 11.2.5 Experiments Performed 11.2.6 Performance Metrics 11.3 Results and Discussions 11.3.1 Performance Comparison of Source and Fused Images 11.3.2 Performance Comparison for Anatomical-Anatomical Image Fusion 11.3.3 Performance Comparison for Anatomical-Functional Image Fusion 11.4 Conclusion References 12. Hybrid Seeker Optimization Algorithm-based Accurate Image Clustering for Automatic Psoriasis Lesion Detection 12.1 Introduction 12.2 Methodology 12.2.1 Database 12.2.2 Seeker Optimization Algorithm 12.2.3 Hybrid Seeker Optimization Algorithm (HSOA) 12.2.4 Post Processing 12.3 Results 12.3.1 Experimental Results 12.4 Discussions 12.5 Conclusion Acknowledgment References 13. A COVID-19 Tracker for Medical Front-Liners 13.1 Introduction 13.2 Methodology 13.2.1 Background 13.2.2 Proposed System 13.2.3 System Requirements 13.2.4 Technical Details 13.3 Modules 13.3.1 Data Collection and Pre-processing 13.3.2 Geocoding and Geotagging Patients 13.3.3 Assigning Health Center and Field Worker 13.3.4 Hospital Management System 13.3.5 Ambulance Management System 13.3.6 Report Generation 13.3.6.1 Patient Discharge Report 13.3.6.2 Custom Data Reports 13.3.7 Analytics 13.4 Mathematical Model 13.5 Results 13.6 Applications 13.7 Conclusion 13.8 Future Work References 14. Implementation of One Dimensional Convolutional Neural Network for ECG Classification on Python Platform 14.1 Introduction 14.2 Overview of 1D-CNN 14.2.1 Convolutional Block 14.2.2 Output Block 14.2.3 Training of Model 14.2.4 Python Platform 14.3 Database 01 14.4 Implementation of 1D-CNN Model 1 for Binary Classification 14.5 Model Evaluation (Results) 14.6 Database 02 14.7 Implementation of 1D-CNN Model 2 for Multi Class Classification 14.8 Model Evaluation for Multi-Class Classification (Results) 14.9 Conclusion References 15. Pneumonia Detection from X-Ray Images by Two Dimensional Convolutional Neural Network on Python Platform 15.1 Introduction 15.1.1 Architecture Overview of Two-Dimensional Convolutional Neural Network (2DCNN) 15.2 Dataset 15.3 Implemented Models of CNN 15.3.1 Model 1 for Binary Classification of X-Ray Images 15.3.2 Model 2 for Binary Classification of X-Ray Images 15.4 Model Evaluation 15.5 Results 15.5.1 Performance Evaluation of Model 1 15.5.2 Performance Evaluation of Model 2 15.6 Conclusion References Index