دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Zodwa Dlamini
سری:
ISBN (شابک) : 3031215052, 9783031215056
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 316
[317]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Artificial Intelligence and Precision Oncology: Bridging Cancer Research and Clinical Decision Support به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی و سرطان شناسی دقیق: تحقیقات سرطان پل زدن و حمایت از تصمیم گیری بالینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب استفاده از هوش مصنوعی (AI)، داده های بزرگ و سرطان شناسی دقیق را برای تصمیم گیری پزشکی در غربالگری، تشخیص، پیش آگهی و درمان سرطان برجسته می کند. انکولوژی دقیق مدتهاست که به عنوان ایده آل برای مدیریت و درمان سرطان تصور می شود. این استراتژی نوید انقلابی در درمان، کنترل و پیشگیری از سرطان با تطبیق آزمایشها، درمانها و پیشبینیها برای افراد یا گروههای جمعیتی خاص را میدهد. برای دستیابی به این اهداف، حجم وسیعی از دادههای خاص بیمار یا گروه جمعیت باید ادغام و تجزیه و تحلیل شود تا بتوان الگوها یا ویژگیهای کلیدی را شناسایی کرد که میتواند برای تعریف یا توصیف بیماری یا پاسخ به بیماری در این افراد استفاده شود. . این الگوها یا ویژگی ها می توانند به اندازه الگوهای مولکولی یا ویژگی های تصاویر پزشکی متفاوت باشند. این سطح از تجزیه و تحلیل و ادغام داده ها تنها با استفاده از هوش مصنوعی قابل دستیابی است.
این کتاب به سه بخش تقسیم شده است که با بخشی در مورد استفاده از هوش مصنوعی برای غربالگری شروع می شود. تشخیص و پایش در انکولوژی دقیق. بخش دوم: هوش مصنوعی و Omics در انکولوژی دقیق، استفاده از هوش مصنوعی و اپی ژنتیک، متابولومیک، میکروبیومیکس را در انکولوژی دقیق برجسته می کند. بخش سوم هوش مصنوعی در درمان سرطان و کاربردهای بالینی آن را پوشش می دهد. همچنین استفاده از ابزارهای هوش مصنوعی برای پیشبینی خطر، تشخیص زودهنگام، تشخیص و پیشآگهی دقیق را برجسته میکند.
این کتاب که توسط متخصصان این حوزه از دانشگاه و صنعت نوشته شده است، جذاب خواهد بود. به محققان سرطان، انکولوژیستهای بالینی، پاتولوژیستها، دانشجویان پزشکی، کادر آموزشی دانشگاهی و دستیاران پزشکی علاقهمند به تحقیقات سرطان و همچنین متخصصان انکولوژیست بالینی.
This book highlights the use of artificial intelligence (AI), big data and precision oncology for medical decision making in cancer screening, diagnosis, prognosis and treatment. Precision oncology has long been thought of as ideal for the management and treatment of cancer. This strategy promises to revolutionize the treatment, control, and prevention of cancer by tailoring tests, treatments and predictions to specific individuals or population groups. In order to accomplish these goals, vast amounts of patient or population group specific data needs to be integrated and analysed to be able to identify key patterns or features which can be used to define or characterize the disease or the response to the disease in these individuals. These patterns or features can be as varied as molecular patterns or features in medical images. This level of data analysis and integration can only be achieved through the use of AI.
The book is divided into three parts starting with a section on the use of artificial intelligence for screening, diagnosis and monitoring in precision oncology. The second part: Artificial intelligence and Omics in precision oncology, highlights the use of AI and epigenetics, metabolomics, microbiomics in precision oncology. The third part covers artificial intelligence in cancer therapy and its clinical applications. It also highlights the use of AI tools for risk prediction, early detection, diagnosis and accurate prognosis.
This book, written by experts in the field from academia and industry, will appeal to cancer researchers, clinical oncologists, pathologists, medical students, academic teaching staff and medical residents interested in cancer research as well as those specialising as clinical oncologists.
Preface Contents Editor and Contributors Chapter 1: The Application of AI in Precision Oncology: Tailoring Diagnosis, Treatment, and the Monitoring of Disease Progress... 1.1 Introduction 1.2 AI in Medicine 1.3 Biomarker Discovery and Application 1.4 Multi-omics Data 1.4.1 Genomics 1.4.2 Transcriptomics 1.4.3 Proteomics 1.4.4 Metabolomics 1.4.5 Microbiomics 1.5 Imaging 1.5.1 Radiogenomics 1.6 Drugs, AI and Precision Oncology 1.6.1 Drug Discovery and Re-purposing 1.6.2 Digital Twins 1.7 Conclusion References Part I: Artificial Intelligence for Screening, Diagnosis, Monitoring in Precision Oncology Chapter 2: Application of AI in Novel Biomarkers Detection that Induces Drug Resistance, Enhance Treatment Regimens, and Advan... 2.1 Introduction 2.2 AI Advances in Healthcare and Precision Oncology 2.3 Classification of Biomarkers 2.4 Oncology Biomarkers: Solid Biomarkers vs Liquid Biomarkers 2.5 Advances in Biomarker Discovery: Liquid Biopsies 2.6 AI in Cancer Biomarker Discovery 2.7 AI in the Detection of Novel Biomarkers for Accurate Prognostication and Prediction of Drug Resistance to Enhance Treatment 2.8 Challenges, Limitations, and Opportunities 2.9 Conclusions and Perspectives References Chapter 3: Use of Artificial Intelligence in Implementing Mainstream Precision Medicine to Improve Traditional Symptom-driven ... 3.1 Introduction 3.2 Artificial Intelligence 3.3 Use of Artificial Intelligence for Early Interventions and Tailoring Better-personalised Treatment of Common Cancers 3.3.1 Breast Cancer 3.3.2 Colorectal Cancer 3.3.3 Lung Cancer 3.3.4 Cancer of the Cervix 3.3.5 Gastric Cancer 3.3.6 Prostate Cancer 3.3.7 Malignant Melanoma 3.3.8 Ovarian Cancer 3.3.9 Hepatocellular Carcinoma 3.3.9.1 Carcinoma of Oesophagus 3.3.10 Pancreatic Adenocarcinoma 3.3.11 Other Cancers 3.4 Limitations 3.5 Conclusion References Chapter 4: AI as a Novel Approach for Exploring ccfNAs in Personalized Clinical Diagnosis and Prognosis: Providing Insight int... 4.1 Introduction 4.2 Cancer Liquid Biopsies and Their Use in Precision Oncology 4.2.1 Cell-Free DNAs 4.2.2 Circulating Tumor DNA 4.2.3 Cell-free Mitochondrial DNA in Cancer 4.3 AI and Cell-free RNAs in Cancer 4.3.1 Non-coding RNA in Cancer 4.3.2 Long Non-coding RNA in Cancer 4.3.3 The Role of MicroRNAs in Human Cancer 4.3.4 Gene Silencing in Diagnosis and Prognosis of Cancer 4.4 Limitations and Future Perspectives 4.5 Conclusion References Chapter 5: AI-Enhanced Digital Pathology and Radiogenomics in Precision Oncology 5.1 Introduction 5.2 Medical Imaging in Precision Medicine 5.2.1 Magnetic Resonance Imaging (MRI) in Precision Medicine 5.2.2 Computed Tomography (CT) Scan in Precision Medicine 5.2.3 Positron Emission Tomography (PET)/Computed Tomography (CT) in Precision Medicine 5.2.4 CT vs. PET/CT Comparisons: The Preferred Choice 5.3 Digital Pathology and AI 5.3.1 Reporting the Results 5.4 Radiogenomics and Artificial Intelligence and Its Use in Precision Medicine 5.4.1 Acquisition of Raw Images 5.4.2 Pre-processing of Information 5.4.3 Extraction of Features 5.4.4 Data Analysis 5.4.5 Current Application of Radiogenomics in Oncology 5.5 Limitations 5.6 Conclusion References Part II: Artificial Intelligence and Omics in Precision Oncology Chapter 6: Epigenetics Analysis Using Artificial Intelligence in the Era of Precision Oncology 6.1 Introduction 6.2 Types of Epigenetic Modifications 6.2.1 DNA Methylation 6.2.2 RNA Regulation 6.2.3 Histone Modifications 6.2.4 Chromosomal Structure 6.3 AI in the Analysis of Epigenomics 6.3.1 Supervised Learning 6.3.2 Unsupervised Learning 6.3.3 Deep Learning 6.4 The Practical Use of Epigenetic Data and AI in the Management of Cancer 6.5 Limitations of AI-Driven Epigenomics Applications 6.6 Conclusions References Chapter 7: Association of Metabolomics with AI in Precision Oncology: Emerging Perspectives for More Effective Cancer Care 7.1 Definitions and Broad Applications 7.1.1 Metabolomics 7.1.2 Analytical Techniques in Metabolomics 7.1.3 Limitations of Metabolomics 7.2 Precision Oncology 7.3 Artificial Intelligence 7.4 Cancer Management and AI 7.4.1 Diagnosis and Treatment of Cancer 7.4.2 Biomarkers 7.4.3 Challenges Facing the Application of AI to Cancer Diagnosis, Prognosis and Treatment 7.5 The Solution to the Challenges of AI Applications 7.6 Precision Medicine in Cancer Care 7.6.1 Introduction 7.6.2 A Summary of the Application of AI to Precision Medicine 7.7 Application of AI to Metabolomics 7.7.1 Application in Therapeutics 7.8 Application in Imaging Genomics (Radiomics/Radiogenomics) 7.9 The Future of Cancer Care 7.10 Conclusion References Chapter 8: Artificial Intelligence Application to Microbiomics Data for Improved Clinical Decision Making in Precision Oncology 8.1 Introduction 8.2 The Human Microbiome 8.3 The Microbiome and Cancer 8.4 Microbiomics 8.4.1 Techniques in Microbiomics 8.4.1.1 Quantitative Microbial Profiling Methods 8.4.1.2 Multi-omics Technologies 8.5 Artificial Intelligence: Big Data and Machine Learning 8.5.1 Big Data 8.5.2 Machine Learning in Microbiomics 8.6 Advancing Precision Oncology 8.7 Targeting the Microbiome in the Treatment of Cancer 8.8 Limitations 8.9 Conclusions References Part III: Artificial Intelligence in Cancer Therapy and Clinical Applications Chapter 9: AI and Nanomedicine in Realizing the Goal of Precision Medicine: Tailoring the Best Treatment for Personalized Canc... 9.1 Introduction 9.2 Nanotechnology Solutions in Precision Medicine 9.2.1 Combining AI and Nanotechnology Solutions in Tailoring the Best Treatment for Cancer Treatment 9.3 Role of AI in Drug Development Optimization 9.3.1 Role of Artificial Intelligence in Clinical Therapy: Drug Dosing and Therapeutic Efficacy Correlation 9.3.2 Role of AI in Improved Targeting 9.3.3 Role of AI in Gene Therapy 9.4 Challenges with AI Integrated Nanotechnologies 9.4.1 AI-Enabled Nanomedicine 9.4.2 Current Nanotechnology Strategies 9.5 Conclusion and Perspectives References Chapter 10: Artificial Intelligence-Based Medical Devices Revolution in Cancer Screening: Impact into Clinical Practice 10.1 Introduction 10.2 The Definition and Characteristics of an AI Device 10.3 History of Artificial Intelligence (AI) Devices 10.4 The Basis of AIMDs 10.5 The Practical Use of AI Devices in Cancers 10.5.1 Radiology and the Analysis of Images for Pathology 10.5.2 Endoscopy 10.6 The Regulation of AI-based Devices 10.7 Drawbacks and Limitations of AI Devices 10.8 Conclusion and Future Perspectives References Chapter 11: Intelligent Drug Design and Use for Cancer Treatment: The Roles of AI and Precision Oncology in Targeting Patient-... 11.1 Introduction 11.2 The Application of AI in Drug Design 11.3 The Role of AI in Drug Screening 11.3.1 Prediction of Physicochemical Properties and Bioactivity Using AI 11.3.2 AI Predictions of the Mode of Action of Potential Drugs 11.4 Techniques and Tools for Computational Drug Discovery 11.5 Protein Modelling and Docking 11.6 Drugs Targeting Alternative Splicing 11.7 Other Applications of AI in Drug Design 11.8 Limitations to AI-Based Drug Design 11.9 Conclusion References Chapter 12: Applying Artificial Intelligence Prediction Tools for Advancing Precision Oncology in Immunotherapy: Future Perspe... 12.1 Introduction 12.1.1 Cancer Immunotherapy 12.1.1.1 The Efficacy of Cancer Immunotherapy 12.1.2 AI and Biomarker Prediction Tools 12.1.2.1 Identification of Genomic Immune Signatures 12.1.2.2 Long Noncoding RNAs as Prognostic Markers 12.1.2.3 MicroRNAs as Prognostic Markers 12.1.2.4 Radiomics as Therapeutic Response Monitoring Tools 12.1.2.5 Other Approaches 12.2 Integration of AI Tools in the Enhancement of Cancer Immunotherapies 12.2.1 AI Tools for the Prediction of Novel Immune-Related Adverse Events 12.2.2 Implementation of AI Tools for Monitoring Patient Compliance to Cancer Immunotherapy 12.3 Challenges of AI in Cancer Immunotherapy 12.4 Future Perspectives 12.5 Conclusion References Chapter 13: Employing AI-Powered Decision Support Systems in Recommending the Most Effective Therapeutic Approaches for Indivi... 13.1 Introduction 13.2 AI-Tools in Optimising Drug Combinations and Enhancing Effective Cancer Therapeutics: From Drug Development to Personalis... 13.3 AI-Empowered Clinical Decision Support: Applications in Chemotherapy, Radiotherapy, Immunotherapy 13.4 AI-Enabled Adaptive Cancer Therapy 13.5 Challenges and Limitations 13.6 Conclusions References Chapter 14: AI-Pathway Companion in Clinical Decision Support: Enabling Personalized and Standardized Care Along Care Pathways... 14.1 Clinical Decision Support Systems 14.1.1 Defining Clinical Decision Support Systems (CDSS) 14.1.2 Clinical Decision Support Systems in Clinical Practice and Clinical Trials 14.1.3 Clinical Decision Support Systems Feature in Clinical Practice 14.1.4 Clinical Decision Support Systems in Pathology 14.2 AI-Pathway Companion in CDSS: Cancer Control and Prevention Includes Awareness, Screening and Early Diagnosis 14.2.1 AI-Pathway Companion in Clinical Decision Support 14.2.2 What Is an AI-Pathway Companion? 14.2.3 AI-Pathway Prostate Cancer 14.2.4 AI-Pathway Companion Breast Cancer 14.2.5 AI-Pathway Companion Coronary Artery Disease 14.2.6 AI-Pathway Companion Infectious Diseases 14.3 Clinical Uses of AI-Pathway Companion 14.4 Cancer Prevention and Control Using COMPAS 14.5 Overview of Clinical Decision Support Systems 14.6 Machine Learning Tools 14.7 Predictive Models Assist in Decision-making 14.8 Developing Treatment Responses 14.9 Limitations in the Application of AI in Precision Medicine 14.10 Conclusion References Chapter 15: AI Tools Offering Cancer Clinical Applications for Risk Predictor, Early Detection, Diagnosis, and Accurate Progno... 15.1 Introduction 15.2 AI-based Tools in Clinical Oncology Workflows 15.3 AI-Models for Predicting Clinically Relevant Parameters in Advancing Precision Oncology 15.4 AI-Enhanced Technologies in Early Cancer Detection, Diagnosis, Risk Stratification and Prognosis 15.5 AI from Bench to Bedside: Challenges and Limitations 15.6 Conclusions References Chapter 16: Conclusion and Insights into the Future of AI in Precision Oncology 16.1 Conclusion