دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سایبرنتیک: هوش مصنوعی ویرایش: نویسندگان: Rijwan Khan, Pawan Kumar Sharma, Sugam Sharma, Santosh Kumar سری: ISBN (شابک) : 9815036114, 9789815036114 ناشر: Bentham Science Publishers سال نشر: 2022 تعداد صفحات: 383 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Artificial Intelligence and Natural Algorithms به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی و الگوریتم های طبیعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب خواننده را در مورد کاربردهای هوش مصنوعی (AI) و
الگوریتم های الهام گرفته از طبیعت در موقعیت های مختلف آگاه می
کند. هر فصل در این کتاب توسط متخصصان موضوعی در زمینه هوش
مصنوعی، الگوریتم های الهام گرفته از طبیعت و علم داده نوشته شده
است.
مفاهیم اساسی مرتبط با این موضوعات، از جمله محاسبات تکاملی (EC)،
شبکه های عصبی مصنوعی (ANN) توضیح داده شده است. ، هوش ازدحامی
(SI) و سیستم های فازی (FS). علاوه بر این، این کتاب همچنین
الگوریتمهای بهینهسازی برای تجزیه و تحلیل دادهها را پوشش
میدهد.
محتوا شامل الگوریتمهایی است که میتواند در سیستمهای طراحیشده
برای تحقیقات علوم گیاهی، متعادلسازی بار، تجزیه و تحلیل محیطی و
مراقبتهای بهداشتی استفاده شود.
هدف این کتاب برای تجهیز خواننده -دانشجویان و تحلیلگران داده- به
اطلاعات مورد نیاز برای اعمال الگوریتم های اساسی هوش مصنوعی برای
حل مشکلات واقعی پیش آمده در یک محیط حرفه ای است.
This book informs the reader about applications of
Artificial Intelligence (AI) and nature-inspired algorithms in
different situations. Each chapter in this book is written by
topic experts on AI, nature-inspired algorithms and data
science.
The basic concepts relevant to these topics are explained,
including evolutionary computing (EC), artificial neural
networks (ANN), swarm intelligence (SI), and fuzzy systems
(FS). Additionally, the book also covers optimization
algorithms for data analysis.
The contents include algorithms that can be used in systems
designed for plant science research, load balancing,
environmental analysis and healthcare.
The goal of the book is to equip the reader – students and data
analysts – with the information needed to apply basic AI
algorithms to resolve actual problems encountered in a
professional environment.
Cover Title Copyright End User License Agreement Contents Preface List of Contributors Data Computation: Awareness, Architecture and Applications Vani Kansal1,* and Sunil K. Singh2 INTRODUCTION SURVEY STRATEGIES Big Data Cloud Computing Pervasive Computing Reconfigurable Computing Green Computing EMBEDDED COMPUTING Parallel Computing Fog Computing Internet of Things and Computing Technology Blockchain NGS-Throughput Digital Image Processing E-commerce Healthcare Informatics and Clinical Research SURVEY OUTCOMES DATA COMPUTING CHALLENGES RELIABLE INDUSTRY 4.0 BASED ON MACHINE LEARNING AND IOT FOR ANALYZING CONCLUSION CONSENT FOR PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENT REFERENCES Different Techniques of Data Fusion in Internet of Things (IoT) Harsh Pratap Singh1,*, Bhaskar Singh2, Rashmi Singh3 and Vaseem Naiyer3 INTRODUCTION Accumulating and Sending Information Receiving and Acting on Information Doing Both Key Challenges of IoT DATA FUSION ARCHTECHTURE Centralized Fusion Architecture Distributed Fusion Architecture Hybrid Fusion Architecture LITERATURE REVIEW MULTI-SENSOR DATA FUSION Fuzzy Logic-Based Data Fusion Bayesian-based Technique Markov Process-based Technique Demspter-Shafer Theory Based Technique Thresholding Techniques and Others APPLICATION OF IOT Smart Environment Health Care IoT in Agriculture Associated Industry Smart Retail Smart Energy and Smart Grid Traffic Monitoring Smart Parking CONCLUSION CONSENT FOR PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Role of Artificial Intelligence in Medicine and Health Care Upasana Pandey1,* and Arvinda Kushwaha1 INTRODUCTION RECENT APPLICATIONS OF AI IN MEDICINE AND HEALTH CARE Diagnosis of Disease and Prediction In Reduction of Complications Taking Care of Patients Under Treatment In Assisting to Improve the Success Ratio of Treatment Living Assistance Biomedical Information Processing AI in Biomedical Research AI in Medical Imaging LATEST AI TECHNIQUES IN MEDICAL SCIENCES EFFECTS OF USAGE OF AI TECHNIQUES Fast and Accurate Diagnostics Reduce the Mortality Rate Reduce Errors Related to Human Fatigue Decrease in Medical Cost AREA OF CONCERNS Care of Old Age People Replacement of Humans with AI Techniques Data Collection and its Security RECENTLY USED AI-BASED MEDICAL TOOLS CONCLUSION CONSENT OF PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Threat Detection and Reporting System Devika Bihani1,*, Saransh Sharma1 and Harshit Jain1 INTRODUCTION RELATED WORK PROPOSED METHOD Weapon Detection Violence Detection Medical Emergency Detection DATASET & PSEUDOCODE PSEUDOCODE CONCLUSION CURRENT & FUTURE DEVELOPMENTS CONSENT FOR PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Offbeat Load Balancing Machine Learning based Algorithm for Job Scheduling Anand Singh Rajawat1,*, Kanishk Barhanpurkar2 and Romil Rawat2 INTRODUCTION RELATED WORK PROPOSED WORK HYBRID APPROACH PRODUCE POPULATION (PP) FITNESS FUNCTION (FF) NATIVE PREEMINENT (NP) CROSSWAY UPDATE GLOBAL PREEMINENT RANDOM FOREST TRAINING PROPOSED TRAINING ALGORITHM PROCEDURE PROPOSED ALGORITHM IMPROVED GENETIC ALGORITHM WITH HYBRID ALGORITHM (HA (GA, KMC AND RF)) LOAD BALANCING UNDER CLOUD COMPUTING ENVIRONMENT RELEVANT OPERATIONS OF GA SIMULATION RESULT ANALYSIS RESULT ANALYSIS Conclusion and Future Work FUTURE SCOPE CONSENT OF PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES A Pattern Optimization for Novel Class in Multi-Class Miner for Stream Data Classification Harsh Pratap Singh1,*, Vinay Singh2, Divakar Singh3 and Rashmi Singh4 INTRODUCTION RELATED WORK FOR STREAM CLASSIFICATION PROPOSED ALGORITHM FOR PATTERN CLASSIFICATION IN MCM RESULT ANALYSIS CONCLUSION CONSENT FOR PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Artificial Intelligence in Healthcare: on the Verge of Major Shift with Opportunities and Challenges Nahid Sami1,* and Asfia Aziz1 INTRODUCTION Why AI in Healthcare AI TECHNIQUES IN HEALTHCARE Machine Learning Support Vector Machine Neural Network Deep Learning Natural Language Processing Opportunity and its Impact Diagnosis Therapy Drug Development and Research Rehabilitation of Elderly The Future Challenges and Limitations Digitization of Clinical Data Privacy and Security Role of Stakeholder Facing the Causality Black Box Issue CONCLUSION CONSENT OF PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES A Review on Automatic Plant Species Recognition System by Leaf Image Using Machine Learning in Indian Ecological System Sugandha Chakraverti1, Ashish Kumar Chakraverti2,*, Jyoti Kumar3, Piyush Bhushan Singh4 and Rakesh Ranjan5 INTRODUCTION IMAGE PROCESSING A Typical Image-Based Plant Identification System (SATTI Et Al., 2013) Image Acquisition Pre-processing Feature Extraction Color Features Shape Features A). Geometric Features B). Morphological Features C). Tooth Features INDIAN PLANTS IMAGE DATA SETS MACHINE LEARNING TECHNIQUES FOR LEAF RECOGNITION DEVELOPMENTS OF AUTOMATIC SYSTEMS/MOBILE APPS FOR LEAF RECOGNITION Plantifier Garden PlantNet iNaturalist KEY ATTRIBUTES FlowerChecker Agrobase LEAF RECOGNITION APP Methodology Integration of the Front-End with the Backend Description CONCLUSION CONSENT FOR PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENT REFERENCES Recognizing Rice Leaves Disorders by Applying Deep Learning Taranjeet Singh1,*, Krishna Kumar2, S. S. Bedi2 and Harshit Bhadwaj3 INTRODUCTION PADDY DISEASES DEEP LEARNING (DL) Pretrained Neural Network (PNN) CONCLUDING REMARKS CONSENT OF PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Shallow Cloud Classification using Deep Learning and Image Segmentation Amreen Ahmad1,*, Chanchal Kumar1, Ajay Kumar Yadav1 and Agnik Guha1 INTRODUCTION What are Shallow Clouds? Why is it Important to Study Shallow Clouds? Motivation for an Automated System for Cloud Classification Benefits RELATED WORK PROPOSED METHODOLOGY Data Preprocessing Data Analysis Model Used UNet Idea Behind UNet Architecture UNet UNet on ResNet34 Backbone: Residual Network Residual Blocks Architecture Cross Entropy Dice Loss RAdam Optima Evaluation Metric DATA SET EXPERIMENTAL ANALYSIS Exploratory Data Analysis Data Augmentation Visualization of Mask Training RESULTS PREDICTED SEGMENTS CONCLUSION CONSENT FOR PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Artificial Intelligence Based Lung Disease Classification By Using Evolutionary Deep Learning Paradigm Archana P. Kale1,*, Ankita R. Angre1, Ankita R. Angre1 and Dhanashree V. Paranjape1 INTRODUCTION RELATED WORK METHODOLOGY Collection of Datasets Deep Learning Algorithm Transfer Learning Image Preprocessing and Features Training of CNN Model CONCLUSION CONSENT FOR PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Hybrid Deep Learning Model for Sleep Disorders Detection Anand Singh Rajawat1,*, Kanishk Barhanpurkar1 and Romil Rawat2 INTRODUCTION RELATED WORK PROPOSED WORK CONVOLUTIONAL NEURAL NETWORK DEEP BELIEF NETWORK SYSTEM ARCHITECTURE DATA-SET Algorithm RESULT ANALYSIS CONCLUDING REMARKS FUTURE SCOPE CONSENT OF PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Identification of Covid-19 Positive Cases Using Deep Learning Model and CT Scan Images I. Kumar1,*, S.P Singh1, Shivam1, N. Mohd2 and J. Rawat3 INTRODUCTION MATERIALS AND METHODOLOGY Dataset Preparation Proposed Work Preprocessing Section Deep Learning Models Non-Linear Activation Function EXPERIMENT AND RESULTS Experimental Setup RESULTS CONCLUSION CONSENT OF PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Application of Nature Inspired Algorithms to Test Data Generation/Selection/Minimization using Mutation Testing Nishtha Jatana1,* and Bharti Suri1 INTRODUCTION Basics of Software Testing TEST COVERAGE AND ADEQUACY PRELIMINARIES Structural Testing Program Based Testing Specification-based Testing Error Seeding Mutation Testing Perturbation Testing Error-based (Infection Based) and Domain Analysis Testing STUDY OF MUTATION TESTING The Process of Mutation Testing Mutant Operators Applications of Mutation Testing Program Mutation Specification Mutation Problems in Mutation Testing Solutions to Problems in Mutation Testing Cost Reduction Techniques Higher-order Mutants Execution Cost Reduction Techniques Execution Type Advanced Platform Support Equivalent Mutant Handling Technique Search-Based Mutation Testing Application of Mutation Testing for Handling the Test Suite Test Case Generation Techniques Test Case Selection and Minimization Techniques Test Case Prioritization Techniques CONSENT OF PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Multimodal Genetic Optimized Feature Selection for Online Sequential Extreme Learning Machine Archana P. Kale1,*, Shefali P. Sonavane1, Shashwati P. Kale1 and Aditi R. Wade2 INTRODUCTION PROPOSED MG-OSELM APPROACH Datasets Preprocessing Subsystem Feature Subset Selection Subsystem Classification Subsystem EXPERIMENTAL RESULTS MG-ELM and ELM MG-OSELM and OSELM CONCLUSION CONSENT OF PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES A New Non-Stigmergic-Ant Algorithm to Make Load Balancing Resilient in Big Data Processing for Enterprises Samia Chehbi Gamoura1,* INTRODUCTION RELATED WORKS AND PROBLEM STATEMENT Business Big Data Processing, Workload Management, and Load Balancing Swarm Intelligence for Load Balancing PROPOSED APPROACH Key Concepts Concept of Neighborhood and Meta-Clustering Concepts of Inner and Outer Load Balancing PB-DNA Algorithm Formulation and Settings Methodology and Simulation Settings C. Methods and metrics extraction EXPERIMENTATION AND RESULTS Dataset Collection and Case Study Data Visualization Benchmarking n°1: PB-DNA Vs. Predictive and Reactive Methods (Robustness Challenge) Benchmarking n°2: PB-DNA Vs. Predictive Methods (Scalability Challenge) Benchmarking n°3: PB-DNA vs. other Reactive Methods (Resilience Challenge) CONCLUSION AND FUTURE WORKS CONSENT OF PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Computational Algorithms and Study of Elastic Artery and their Applications Anil Kumar1,* INTRODUCTION DYNAMICAL STUDY OF PULSATILE FLOW PERFORMANCE OF PULSATILE FLOW IN ELASTIC ARTERIES PERFORMANCE OF WAVE REFLECTIONS BRANCHING AND TETHERING COMPUTATIONAL TECHNIQUES FOR BLOOD FLOW Finite Difference Technique Crank –Nicolson Scheme BASIC EQUATION OF BLOOD FLOW DESCRIPTION OF MATHEMATICAL MODEL COMPUTATIONAL ALGORITHM RESULTS AND DISCUSSION CONCLUSION APPLICATIONS CONSENT FOR PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENTS REFERENCES Performance Analysis of CCS on Inclined Plane using Fuzzy-PID Controller Saty Prakash Yadav1,* and Amit Kumar Singh1 INTRODUCTION Mathematical Modelling and Controller Design Mathematical Modelling Controller Design PID CONTROLLER PROCEDURE OF PID TUNING WITH OSCILLATION Z-N METHOD ADVANTAGES OF PID CONTROLLER DISADVANTAGE OF PID CONTROLLER FUZZY LOGIC CONTROLLER (FLC) FUZZIFICATION FUZZY RULE INTERFACE (FRI) EBRAHIM MAMDANI FUZZY MODEL (EMFM) Sugeno Fuzzy Model (SFM) Tsukamoto Fuzzy Model DEFUZZIFICATION MEMBERSHIP FUNCTION (MF) Types of Membership Functions ADVANTAGE OF FLC FUZZY- PID (F-PID) CONTROLLER RESULTS AND DISCUSSION CONCLUSION Future Developments LIST OF ABBREVIATIONS CONSENT OF PUBLICATION CONFLICT OF INTEREST ACKNOWLEDGEMENT REFERENCES Subject Index Back Cover