ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Artificial Intelligence and Natural Algorithms

دانلود کتاب هوش مصنوعی و الگوریتم های طبیعی

Artificial Intelligence and Natural Algorithms

مشخصات کتاب

Artificial Intelligence and Natural Algorithms

دسته بندی: سایبرنتیک: هوش مصنوعی
ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 9815036114, 9789815036114 
ناشر: Bentham Science Publishers 
سال نشر: 2022 
تعداد صفحات: 383 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 23 مگابایت 

قیمت کتاب (تومان) : 33,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Artificial Intelligence and Natural Algorithms به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب هوش مصنوعی و الگوریتم های طبیعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب هوش مصنوعی و الگوریتم های طبیعی

این کتاب خواننده را در مورد کاربردهای هوش مصنوعی (AI) و الگوریتم های الهام گرفته از طبیعت در موقعیت های مختلف آگاه می کند. هر فصل در این کتاب توسط متخصصان موضوعی در زمینه هوش مصنوعی، الگوریتم های الهام گرفته از طبیعت و علم داده نوشته شده است.

مفاهیم اساسی مرتبط با این موضوعات، از جمله محاسبات تکاملی (EC)، شبکه های عصبی مصنوعی (ANN) توضیح داده شده است. ، هوش ازدحامی (SI) و سیستم های فازی (FS). علاوه بر این، این کتاب همچنین الگوریتم‌های بهینه‌سازی برای تجزیه و تحلیل داده‌ها را پوشش می‌دهد.

محتوا شامل الگوریتم‌هایی است که می‌تواند در سیستم‌های طراحی‌شده برای تحقیقات علوم گیاهی، متعادل‌سازی بار، تجزیه و تحلیل محیطی و مراقبت‌های بهداشتی استفاده شود.

هدف این کتاب برای تجهیز خواننده -دانشجویان و تحلیلگران داده- به اطلاعات مورد نیاز برای اعمال الگوریتم های اساسی هوش مصنوعی برای حل مشکلات واقعی پیش آمده در یک محیط حرفه ای است.


توضیحاتی درمورد کتاب به خارجی

This book informs the reader about applications of Artificial Intelligence (AI) and nature-inspired algorithms in different situations. Each chapter in this book is written by topic experts on AI, nature-inspired algorithms and data science.

The basic concepts relevant to these topics are explained, including evolutionary computing (EC), artificial neural networks (ANN), swarm intelligence (SI), and fuzzy systems (FS). Additionally, the book also covers optimization algorithms for data analysis.

The contents include algorithms that can be used in systems designed for plant science research, load balancing, environmental analysis and healthcare.

The goal of the book is to equip the reader – students and data analysts – with the information needed to apply basic AI algorithms to resolve actual problems encountered in a professional environment.



فهرست مطالب

Cover
Title
Copyright
End User License Agreement
Contents
Preface
List of Contributors
Data Computation: Awareness, Architecture and Applications
	Vani Kansal1,* and Sunil K. Singh2
	INTRODUCTION
	SURVEY STRATEGIES
		Big Data
		Cloud Computing
		Pervasive Computing
		Reconfigurable Computing
		Green Computing
	EMBEDDED COMPUTING
		Parallel Computing
		Fog Computing
		Internet of Things and Computing Technology
		Blockchain
		NGS-Throughput
		Digital Image Processing
		E-commerce
		Healthcare Informatics and Clinical Research
	SURVEY OUTCOMES
	DATA COMPUTING CHALLENGES
	RELIABLE INDUSTRY 4.0 BASED ON MACHINE LEARNING AND IOT FOR ANALYZING
	CONCLUSION
	CONSENT FOR PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENT
	REFERENCES
Different Techniques of Data Fusion in Internet of Things (IoT)
	Harsh Pratap Singh1,*, Bhaskar Singh2, Rashmi Singh3 and Vaseem Naiyer3
	INTRODUCTION
		Accumulating and Sending Information
		Receiving and Acting on Information
		Doing Both
		Key Challenges of IoT
	DATA FUSION ARCHTECHTURE
		Centralized Fusion Architecture
		Distributed Fusion Architecture
		Hybrid Fusion Architecture
	LITERATURE REVIEW
	MULTI-SENSOR DATA FUSION
		Fuzzy Logic-Based Data Fusion
		Bayesian-based Technique
		Markov Process-based Technique
		Demspter-Shafer Theory Based Technique
		Thresholding Techniques and Others
	APPLICATION OF IOT
		Smart Environment
		Health Care
		IoT in Agriculture
		Associated Industry
		Smart Retail
		Smart Energy and Smart Grid
		Traffic Monitoring
		Smart Parking
	CONCLUSION
	CONSENT FOR PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
Role of Artificial Intelligence in Medicine and Health Care
	Upasana Pandey1,* and Arvinda Kushwaha1
	INTRODUCTION
	RECENT APPLICATIONS OF AI IN MEDICINE AND HEALTH CARE
		Diagnosis of Disease and Prediction
		In Reduction of Complications
		Taking Care of Patients Under Treatment
		In Assisting to Improve the Success Ratio of Treatment
		Living Assistance
		Biomedical Information Processing
		AI in Biomedical Research
		AI in Medical Imaging
	LATEST AI TECHNIQUES IN MEDICAL SCIENCES
	EFFECTS OF USAGE OF AI TECHNIQUES
		Fast and Accurate Diagnostics Reduce the Mortality Rate
		Reduce Errors Related to Human Fatigue
		Decrease in Medical Cost
	AREA OF CONCERNS
		Care of Old Age People
		Replacement of Humans with AI Techniques
		Data Collection and its Security
	RECENTLY USED AI-BASED MEDICAL TOOLS
	CONCLUSION
	CONSENT OF PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
Threat Detection and Reporting System
	Devika Bihani1,*, Saransh Sharma1 and Harshit Jain1
	INTRODUCTION
	RELATED WORK
	PROPOSED METHOD
		Weapon Detection
		Violence Detection
		Medical Emergency Detection
	DATASET & PSEUDOCODE
	PSEUDOCODE
	CONCLUSION
	CURRENT & FUTURE DEVELOPMENTS
	CONSENT FOR PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
Offbeat Load Balancing Machine Learning based Algorithm for Job Scheduling
	Anand Singh Rajawat1,*, Kanishk Barhanpurkar2 and Romil Rawat2
	INTRODUCTION
	RELATED WORK
	PROPOSED WORK
	HYBRID APPROACH
	PRODUCE POPULATION (PP)
	FITNESS FUNCTION (FF)
	NATIVE PREEMINENT (NP)
	CROSSWAY
	UPDATE GLOBAL PREEMINENT
	RANDOM FOREST TRAINING
	PROPOSED TRAINING ALGORITHM
	PROCEDURE
	PROPOSED ALGORITHM
	IMPROVED GENETIC ALGORITHM WITH HYBRID ALGORITHM (HA (GA, KMC AND RF))
	LOAD BALANCING UNDER CLOUD COMPUTING ENVIRONMENT
	RELEVANT OPERATIONS OF GA
	SIMULATION RESULT ANALYSIS
	RESULT ANALYSIS
		Conclusion and Future Work
	FUTURE SCOPE
	CONSENT OF PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
A Pattern Optimization for Novel Class in Multi-Class Miner for Stream Data Classification
	Harsh Pratap Singh1,*, Vinay Singh2, Divakar Singh3 and Rashmi Singh4
	INTRODUCTION
	RELATED WORK FOR STREAM CLASSIFICATION
	PROPOSED ALGORITHM FOR PATTERN CLASSIFICATION IN MCM
	RESULT ANALYSIS
	CONCLUSION
	CONSENT FOR PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
Artificial Intelligence in Healthcare: on the Verge of Major Shift with Opportunities and Challenges
	Nahid Sami1,* and Asfia Aziz1
	INTRODUCTION
		Why AI in Healthcare
	AI TECHNIQUES IN HEALTHCARE
		Machine Learning
		Support Vector Machine
		Neural Network
		Deep Learning
		Natural Language Processing
		Opportunity and its Impact
		Diagnosis
		Therapy
		Drug Development and Research
		Rehabilitation of Elderly
		The Future
		Challenges and Limitations
		Digitization of Clinical Data
		Privacy and Security
		Role of Stakeholder
		Facing the Causality
		Black Box Issue
	CONCLUSION
	CONSENT OF PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
A Review on Automatic Plant Species Recognition System by Leaf Image Using Machine Learning in Indian Ecological System
	Sugandha Chakraverti1, Ashish Kumar Chakraverti2,*, Jyoti Kumar3, Piyush Bhushan Singh4 and Rakesh Ranjan5
	INTRODUCTION
	IMAGE PROCESSING
		A Typical Image-Based Plant Identification System (SATTI Et Al., 2013)
		Image Acquisition
		Pre-processing
		Feature Extraction
		Color Features
		Shape Features
			A). Geometric Features
			B). Morphological Features
			C). Tooth Features
	INDIAN PLANTS IMAGE DATA SETS
	MACHINE LEARNING TECHNIQUES FOR LEAF RECOGNITION
	DEVELOPMENTS OF AUTOMATIC SYSTEMS/MOBILE APPS FOR LEAF RECOGNITION
		Plantifier
		Garden
		PlantNet
		iNaturalist
	KEY ATTRIBUTES
		FlowerChecker
		Agrobase
	LEAF RECOGNITION APP
		Methodology
		Integration of the Front-End with the Backend
		Description
	CONCLUSION
	CONSENT FOR PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENT
	REFERENCES
Recognizing Rice Leaves Disorders by Applying Deep Learning
	Taranjeet Singh1,*, Krishna Kumar2, S. S. Bedi2 and Harshit Bhadwaj3
	INTRODUCTION
	PADDY DISEASES
	DEEP LEARNING (DL)
		Pretrained Neural Network (PNN)
	CONCLUDING REMARKS
	CONSENT OF PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
Shallow Cloud Classification using Deep Learning and Image Segmentation
	Amreen Ahmad1,*, Chanchal Kumar1, Ajay Kumar Yadav1 and Agnik Guha1
	INTRODUCTION
		What are Shallow Clouds?
		Why is it Important to Study Shallow Clouds?
		Motivation for an Automated System for Cloud Classification
		Benefits
	RELATED WORK
	PROPOSED METHODOLOGY
		Data Preprocessing
		Data Analysis
		Model Used
			UNet
			Idea Behind UNet
			Architecture UNet
			UNet on ResNet34 Backbone: Residual Network
			Residual Blocks
		Architecture
		Cross Entropy
		Dice Loss
		RAdam Optima
		Evaluation Metric
	DATA SET
	EXPERIMENTAL ANALYSIS
		Exploratory Data Analysis
		Data Augmentation
		Visualization of Mask
		Training
	RESULTS
	PREDICTED SEGMENTS
	CONCLUSION
	CONSENT FOR PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
Artificial Intelligence Based Lung Disease Classification By Using Evolutionary Deep Learning Paradigm
	Archana P. Kale1,*, Ankita R. Angre1, Ankita R. Angre1 and Dhanashree V. Paranjape1
	INTRODUCTION
	RELATED WORK
	METHODOLOGY
		Collection of Datasets
		Deep Learning Algorithm
		Transfer Learning
		Image Preprocessing and Features
		Training of CNN Model
	CONCLUSION
	CONSENT FOR PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
Hybrid Deep Learning Model for Sleep Disorders Detection
	Anand Singh Rajawat1,*, Kanishk Barhanpurkar1 and Romil Rawat2
	INTRODUCTION
	RELATED WORK
	PROPOSED WORK
	CONVOLUTIONAL NEURAL NETWORK
	DEEP BELIEF NETWORK
	SYSTEM ARCHITECTURE
	DATA-SET
		Algorithm
	RESULT ANALYSIS
	CONCLUDING REMARKS
	FUTURE SCOPE
	CONSENT OF PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
Identification of Covid-19 Positive Cases Using Deep Learning Model and CT Scan Images
	I. Kumar1,*, S.P Singh1, Shivam1, N. Mohd2 and J. Rawat3
	INTRODUCTION
	MATERIALS AND METHODOLOGY
		Dataset Preparation
		Proposed Work
		Preprocessing Section
			Deep Learning Models
		Non-Linear Activation Function
	EXPERIMENT AND RESULTS
		Experimental Setup
	RESULTS
	CONCLUSION
	CONSENT OF PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
Application of Nature Inspired Algorithms to Test Data Generation/Selection/Minimization using Mutation Testing
	Nishtha Jatana1,* and Bharti Suri1
	INTRODUCTION
		Basics of Software Testing
	TEST COVERAGE AND ADEQUACY PRELIMINARIES
		Structural Testing
			Program Based Testing
			Specification-based Testing
			Error Seeding
			Mutation Testing
			Perturbation Testing
			Error-based (Infection Based) and Domain Analysis Testing
	STUDY OF MUTATION TESTING
		The Process of Mutation Testing
		Mutant Operators
			Applications of Mutation Testing
			Program Mutation
			Specification Mutation
		Problems in Mutation Testing
		Solutions to Problems in Mutation Testing
			Cost Reduction Techniques
			Higher-order Mutants
			Execution Cost Reduction Techniques
			Execution Type
			Advanced Platform Support
			Equivalent Mutant Handling Technique
			Search-Based Mutation Testing
		Application of Mutation Testing for Handling the Test Suite
			Test Case Generation Techniques
			Test Case Selection and Minimization Techniques
			Test Case Prioritization Techniques
	CONSENT OF PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
Multimodal Genetic Optimized Feature Selection for Online Sequential Extreme Learning Machine
	Archana P. Kale1,*, Shefali P. Sonavane1, Shashwati P. Kale1 and Aditi R. Wade2
	INTRODUCTION
	PROPOSED MG-OSELM APPROACH
		Datasets
		Preprocessing Subsystem
		Feature Subset Selection Subsystem
		Classification Subsystem
	EXPERIMENTAL RESULTS
		MG-ELM and ELM
		MG-OSELM and OSELM
	CONCLUSION
	CONSENT OF PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
A New Non-Stigmergic-Ant Algorithm to Make Load Balancing Resilient in Big Data Processing for Enterprises
	Samia Chehbi Gamoura1,*
	INTRODUCTION
	RELATED WORKS AND PROBLEM STATEMENT
		Business Big Data Processing, Workload Management, and Load Balancing
		Swarm Intelligence for Load Balancing
	PROPOSED APPROACH
		Key Concepts
			Concept of Neighborhood and Meta-Clustering
		Concepts of Inner and Outer Load Balancing
		PB-DNA Algorithm
		Formulation and Settings
		Methodology and Simulation Settings
		C. Methods and metrics extraction
	EXPERIMENTATION AND RESULTS
		Dataset Collection and Case Study
		Data Visualization
			Benchmarking n°1: PB-DNA Vs. Predictive and Reactive Methods (Robustness Challenge)
		Benchmarking n°2: PB-DNA Vs. Predictive Methods (Scalability Challenge)
		Benchmarking n°3: PB-DNA vs. other Reactive Methods (Resilience Challenge)
	CONCLUSION AND FUTURE WORKS
	CONSENT OF PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
Computational Algorithms and Study of Elastic Artery and their Applications
	Anil Kumar1,*
	INTRODUCTION
	DYNAMICAL STUDY OF PULSATILE FLOW
	PERFORMANCE OF PULSATILE FLOW IN ELASTIC ARTERIES
	PERFORMANCE OF WAVE REFLECTIONS BRANCHING AND TETHERING
	COMPUTATIONAL TECHNIQUES FOR BLOOD FLOW
		Finite Difference Technique
		Crank –Nicolson Scheme
	BASIC EQUATION OF BLOOD FLOW
	DESCRIPTION OF MATHEMATICAL MODEL
	COMPUTATIONAL ALGORITHM
	RESULTS AND DISCUSSION
	CONCLUSION
	APPLICATIONS
	CONSENT FOR PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES
Performance Analysis of CCS on Inclined Plane using Fuzzy-PID Controller
	Saty Prakash Yadav1,* and Amit Kumar Singh1
	INTRODUCTION
		Mathematical Modelling and Controller Design
		Mathematical Modelling
		Controller Design
	PID CONTROLLER
	PROCEDURE OF PID TUNING WITH OSCILLATION Z-N METHOD
	ADVANTAGES OF PID CONTROLLER
	DISADVANTAGE OF PID CONTROLLER
	FUZZY LOGIC CONTROLLER (FLC)
	FUZZIFICATION
	FUZZY RULE INTERFACE (FRI)
	EBRAHIM MAMDANI FUZZY MODEL (EMFM)
		Sugeno Fuzzy Model (SFM)
		Tsukamoto Fuzzy Model
	DEFUZZIFICATION
	MEMBERSHIP FUNCTION (MF)
		Types of Membership Functions
	ADVANTAGE OF FLC
	FUZZY- PID (F-PID) CONTROLLER
	RESULTS AND DISCUSSION
	CONCLUSION
		Future Developments
	LIST OF ABBREVIATIONS
	CONSENT OF PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENT
	REFERENCES
Subject Index
Back Cover




نظرات کاربران