دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2021
نویسندگان: Ankur Saxena (editor). Shivani Chandra (editor)
سری:
ISBN (شابک) : 9811608105, 9789811608100
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 37 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Artificial Intelligence and Machine Learning in Healthcare به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی و یادگیری ماشین در بهداشت و درمان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents About the Authors List of Figures List of Tables 1: Practical Applications of Artificial Intelligence for Disease Prognosis and Management 1.1 Overview of Application of AI in Disease Management 1.1.1 Disease Prognosis and Diagnosis 1.1.2 AI in Identification of Biomarker of Disease 1.1.3 AI in Drug Development 1.2 Public Data Repositories 1.2.1 KAGGLE 1.2.2 Csv 1.2.3 JSON 1.2.4 SQLite 1.2.5 Archives 1.2.6 UCI ML Repository 1.2.7 HealthData.gov 1.3 Review of Artificial Intelligence Techniques on Disease Data 1.3.1 Logistic Regression Model 1.3.2 Artificial Neural Network Model 1.3.3 Support Vector Machine Model 1.4 Case Study: Parkinson´s Disease Prediction 1.4.1 Importing the Data 1.4.2 Data Preprocessing and Feature Selection 1.4.3 Building Classifier 1.4.4 Predictive Modelling 1.4.5 Performance Validation of the Model References 2: Automated Diagnosis of Diabetes Mellitus Based on Machine Learning 2.1 Introduction 2.2 Diabetes Mellitus 2.2.1 Classification of Diabetes Mellitus 2.2.2 Diagnosis of Diabetes Mellitus 2.2.3 Diabetes Management 2.3 Role of Artificial Intelligence in Healthcare 2.4 AI Technologies Accelerate Progress in Medical Diagnosis 2.5 Machine Learning 2.5.1 Types of Machine Learning 2.5.2 Role of Machine Learning in Diabetes Mellitus Management 2.6 Methodology for Development of an Application Based on ML 2.6.1 Dataset 2.6.2 Data Preprocessing 2.6.3 Model Construction 2.6.4 Results 2.7 Conclusion References 3: Artificial Intelligence in Personalized Medicine 3.1 Introduction 3.2 Personalized Medicine 3.3 Importance of Artificial Intelligence 3.4 Use of Artificial Intelligence in Healthcare 3.5 Models of Artificial Intelligence Used in Personalized Medicine 3.6 Use of Different Learning Models in Personalized Medicine 3.6.1 Naïve Bayes Model 3.6.2 Support Vector Machine (SVM) 3.6.3 Deep Learning References 4: Artificial Intelligence in Precision Medicine: A Perspective in Biomarker and Drug Discovery 4.1 Precision Medicine as a Process: A New Approach for Healthcare 4.2 Role of Artificial Intelligence: Biomarker Discovery for Precision Medicine 4.2.1 Biomarker(s) for Diagnostics 4.2.2 Biomarker(s) for Disease Prognosis 4.3 Role of Artificial Intelligence: Drug Discovery for Precision Medicine 4.3.1 Drug Discovery Process 4.3.2 Understanding the Disease Process and Target Identification 4.3.3 Identification of Hit and Lead 4.3.4 Synthesis of Compounds 4.3.5 Predicting the Drug-Target Interactions Using AI 4.3.6 Artificial Intelligence in Clinical Trials 4.3.7 Drug Repurposing 4.3.8 Some Examples of AI and Pharma Partnerships 4.4 Precision Medicine and Artificial Intelligence: Hopes and Challenges References 5: Transfer Learning in Biological and Health Care 5.1 Introduction 5.2 Methodology 5.2.1 Dataset Curation 5.2.2 Data Loading and Preprocessing 5.2.3 Loading Transfer Learning Models 5.2.3.1 VGG-16 5.2.3.2 EfficientNet 5.2.3.3 Inception-ResNet-V2 5.2.3.4 Inception V3 5.2.4 Training 5.2.5 Testing References 6: Visualization and Prediction of COVID-19 Using AI and ML 6.1 Introduction 6.2 Technology for ML and AI in SARS-CoV-2 Treatment 6.3 SARS-Cov-2 Tracing Using AI Technologies 6.4 Forecasting Disease Using ML and AI Technology 6.5 Technology of ML and AI in SARS-CoV-2 Medicines and Vaccine 6.6 Analysis and Forecasting 6.6.1 Predictions on the First Round 6.6.2 Predictions on the Second Round 6.6.3 Predictions on the Third Round 6.6.4 Predictions on the Fourth Round 6.6.5 Predictions on the Fifth Round 6.7 Methods Used in Predicting COVID-19 6.7.1 Recurrent Neural Networks (RNN) 6.7.2 Long Short-Term Memory (LSTM) and Its Variants 6.7.3 Deep LSTM/Stacked LSTM 6.7.4 Bidirectional LSTM (Bi-LSTM) 6.8 Conclusion References 7: Machine Learning Approaches in Detection and Diagnosis of COVID-19 7.1 Introduction 7.2 Review of ML Approaches in Detection of Pneumonia in General 7.3 Application of Deep Learning Approaches in COVID-19 Detection 7.3.1 Deep Learning Model Frameworks 7.3.1.1 ResNet Models 7.3.1.2 Other CNN Models 7.3.2 The Data Imbalance Challenge 7.3.3 Interpretation/Visualization of Results 7.3.4 Performance Measurement Metrics 7.4 Challenges 7.5 Summary References 8: Applications of Machine Learning Algorithms in Cancer Diagnosis 8.1 Introduction 8.1.1 Machine Learning in Healthcare 8.1.2 Cancer Study Using ML 8.2 Machine Learning Techniques 8.3 Machine Learning and Cancer Prediction/Prognosis 8.3.1 Cancer: The Dreaded Disease and a Case Study for ML 8.3.2 Machine Learning in Cancer 8.3.3 Dataset for Cancer Study 8.3.4 Steps to Implement Machine Learning 8.3.5 Tool Selection for Cancer Predictions 8.3.6 Methodology, Selection of ML Algorithm, and Metrics for Performance Measurement of ML in Cancer Prognosis 8.4 Results and Analysis 8.4.1 Liver Cancer Dataset 8.4.2 Prostate Cancer Dataset 8.4.3 Breast Cancer Dataset 8.5 Major Findings and Issues 8.6 Future Possibilities and Challenges in Cancer Prognosis References 9: Use of Artificial Intelligence in Research and Clinical Decision Making for Combating Mycobacterial Diseases 9.1 Introduction of Technological Advancements and High Throughput Data in Genomics and Proteomics Work 9.1.1 High Throughput Screening of Tuberculosis 9.1.2 High Throughput Screening of Leprosy 9.1.3 High Throughput and Ultra-High Throughput Screening of Compound Libraries for Drug Discovery and Drug Repurposing 9.2 High Volume Data and the Bottleneck in Data Analysis 9.2.1 Development of Omics Data 9.2.2 NGS and its Use in Clinical Decision-Making, Proteomics, Docking, Simulations, Drug Screening (Repurposing of Drugs) 9.3 Advent of Artificial Intelligence (AI) and Machine Learning (ML) 9.3.1 Machine Learning and Deep Learning (DL) Algorithms 9.3.2 AI in Drug Repurposing 9.3.3 Examples from NGS and its Use in Clinical Decision-Making, Proteomics, Docking, Simulations, Drug Screening (Repurposing... 9.4 Illustrations of Machine Learning in Different Research Fields 9.4.1 AI and ML in Covid-19-Related Research 9.4.2 AI and ML in Skin Diseases 9.5 Limitations of AI and ML 9.6 Can Machines Become a Total Replacement for Human Intelligence? 9.7 Concluding Remarks References 10: Bias in Medical Big Data and Machine Learning Algorithms 10.1 Introduction 10.2 Medical Big Data (MBD) 10.3 Analysis of Medical Big Data 10.4 Bias 10.4.1 Perceptive Bias 10.4.1.1 Problem Definition 10.4.1.2 Social and Technical Aspects 10.4.1.3 Fairness of Data 10.4.2 Processing Bias 10.4.2.1 Pre-Processing 10.4.2.2 In-Processing 10.4.2.3 Post Processing 10.4.3 Computing Bias 10.4.3.1 Awareness of Bias 10.4.3.2 Modelling Bias 10.4.3.3 AI Decisions 10.5 Conclusion References