دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Neeraj Bhargava (editor), Ritu Bhargava (editor), Pramod Singh Rathore (editor), Rashmi Agrawal (editor) سری: ISBN (شابک) : 1119760402, 9781119760405 ناشر: Wiley-Scrivener سال نشر: 2021 تعداد صفحات: 320 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 21 Mb
در صورت تبدیل فایل کتاب Artificial Intelligence and Data Mining Approaches in Security Frameworks: Advances and Challenges (Advances in Data Engineering and Machine Learning) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رویکردهای هوش مصنوعی و داده کاوی در چارچوبهای امنیتی: پیشرفتها و چالشها (پیشرفتها در مهندسی داده و یادگیری ماشین) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هوش مصنوعی (AI) و داده کاوی سریعترین رشته در حال رشد در علوم کامپیوتر است. الگوریتم ها و تکنیک های هوش مصنوعی و داده کاوی در زمینه های مختلفی مانند تشخیص الگو، تشخیص خودکار تهدید، حل خودکار مشکل، تشخیص بصری، تشخیص تقلب، تشخیص تاخیر رشد در کودکان و بسیاری از کاربردهای دیگر مفید هستند. با این حال، بهکارگیری روشها یا الگوریتمهای هوش مصنوعی و دادهکاوی با موفقیت در این زمینهها به تلاشی هماهنگ نیاز دارد، و تحقیقات یکپارچهای را بین متخصصان از رشتههای مختلف از علم داده تا هوش مصنوعی تقویت میکند. کاربرد موفقیتآمیز چارچوبهای امنیتی برای فعال کردن خدمات امنیتی معنادار، مقرونبهصرفه و شخصیسازی شده، هدف اصلی مهندسان و محققان امروزی است. با این حال، تحقق این هدف مستلزم درک، بکارگیری و ادغام مؤثر هوش مصنوعی و داده کاوی و چندین فناوری محاسباتی دیگر برای استقرار چنین سیستمی به شیوه ای مؤثر است.
این کتاب آخرین رویکردهای هوش مصنوعی و داده ها را ارائه می دهد. استخراج معادن در این مناطق این شامل حوزه های تشخیص، پیش بینی، و همچنین شناسایی چارچوب آینده، توسعه، ساخت سیستم های خدمات و جنبه های تحلیلی است. در تمامی این مباحث، کاربردهای هوش مصنوعی و داده کاوی مانند شبکه های عصبی مصنوعی، منطق فازی، الگوریتم ژنتیک و مکانیسم های ترکیبی توضیح و بررسی شده است. هدف این کتاب مدلسازی و پیشبینی عملکرد سیستمهای چارچوب امنیتی کارآمد است و بعد جدیدی را در تئوری و عمل آشکار میکند.
این جلد جدید پیشگامانه، این موضوعات و روندها را ارائه میکند و شکاف تحقیقاتی در زمینه هوش مصنوعی و دادهکاوی را پر میکند تا امکان پیادهسازی در مقیاس وسیع را فراهم کند. چه برای مهندس کهنه کار و چه برای دانشجو، این یکی از موارد ضروری برای هر کتابخانه است.
Artificial intelligence (AI) and data mining is the fastest growing field in computer science. AI and data mining algorithms and techniques are found to be useful in different areas like pattern recognition, automatic threat detection, automatic problem solving, visual recognition, fraud detection, detecting developmental delay in children, and many other applications. However, applying AI and data mining techniques or algorithms successfully in these areas needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to Artificial Intelligence. Successful application of security frameworks to enable meaningful, cost effective, personalize security service is a primary aim of engineers and researchers today. However realizing this goal requires effective understanding, application and amalgamation of AI and Data Mining and several other computing technologies to deploy such system in an effective manner.
This book provides state of the art approaches of artificial intelligence and data mining in these areas. It includes areas of detection, prediction, as well as future framework identification, development, building service systems and analytical aspects. In all these topics, applications of AI and data mining, such as artificial neural networks, fuzzy logic, genetic algorithm and hybrid mechanisms, are explained and explored. This book is aimed at the modeling and performance prediction of efficient security framework systems, bringing to light a new dimension in the theory and practice.
This groundbreaking new volume presents these topics and trends, bridging the research gap on AI and data mining to enable wide-scale implementation. Whether for the veteran engineer or the student, this is a must-have for any library.
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface 1 Role of AI in Cyber Security 1.1 Introduction 1.2 Need for Artificial Intelligence 1.3 Artificial Intelligence in Cyber Security 1.3.1 Multi-Layered Security System Design 1.3.2 Traditional Security Approach and AI 1.4 Related Work 1.4.1 Literature Review 1.4.2 Corollary 1.5 Proposed Work 1.5.1 System Architecture 1.5.2 Future Scope 1.6 Conclusion References 2 Privacy Preserving Using Data Mining 2.1 Introduction 2.2 Data Mining Techniques and Their Role in Classification and Detection 2.3 Clustering 2.4 Privacy Preserving Data Mining (PPDM) 2.5 Intrusion Detection Systems (IDS) 2.5.1 Types of IDS 2.6 Phishing Website Classification 2.7 Attacks by Mitigating Code Injection 2.7.1 Code Injection and Its Categories 2.8 Conclusion References 3 Role of Artificial Intelligence in Cyber Security and Security Framework 3.1 Introduction 3.2 AI for Cyber Security 3.3 Uses of Artificial Intelligence in Cyber Security 3.4 The Role of AI in Cyber Security 3.4.1 Simulated Intelligence Can Distinguish Digital Assaults 3.4.2 Computer-Based Intelligence Can Forestall Digital Assaults 3.4.3 Artificial Intelligence and Huge Scope Cyber Security 3.4.4 Challenges and Promises of Artificial Intelligence in Cyber Security 3.4.5 Present-Day Cyber Security and its Future with Simulated Intelligence 3.4.6 Improved Cyber Security with Computer-Based Intelligence and AI (ML) 3.4.7 AI Adopters Moving to Make a Move 3.5 AI Impacts on Cyber Security 3.6 The Positive Uses of AI Based for Cyber Security 3.7 Drawbacks and Restrictions of Using Computerized Reasoning For Digital Security 3.8 Solutions to Artificial Intelligence Confinements 3.9 Security Threats of Artificial Intelligence 3.10 Expanding Cyber Security Threats with Artificial Consciousness 3.11 Artificial Intelligence in Cybersecurity – Current Use-Cases and Capabilities 3.11.1 AI for System Danger Distinguishing Proof 3.11.2 The Common Fit for Artificial Consciousness in Cyber Security 3.11.3 Artificial Intelligence for System Danger ID 3.11.4 Artificial Intelligence Email Observing 3.11.5 Simulated Intelligence for Battling Artificial Intelligence Dangers 3.11.6 The Fate of Computer-Based Intelligence in Cyber Security 3.12 How to Improve Cyber Security for Artificial Intelligence 3.13 Conclusion References 4 Botnet Detection Using Artificial Intelligence 4.1 Introduction to Botnet 4.2 Botnet Detection 4.2.1 Host-Centred Detection (HCD) 4.2.2 Honey Nets-Based Detection (HNBD) 4.2.3 Network-Based Detection (NBD) 4.3 Botnet Architecture 4.3.1 Federal Model 4.3.2 Devolved Model 4.3.3 Cross Model 4.4 Detection of Botnet 4.4.1 Perspective of Botnet Detection 4.4.2 Detection (Disclosure) Technique 4.4.3 Region of Tracing 4.5 Machine Learning 4.5.1 Machine Learning Characteristics 4.6 A Machine Learning Approach of Botnet Detection 4.7 Methods of Machine Learning Used in Botnet Exposure 4.7.1 Supervised (Administrated) Learning 4.7.2 Unsupervised Learning 4.8 Problems with Existing Botnet Detection Systems 4.9 Extensive Botnet Detection System (EBDS) 4.10 Conclusion References 5 Spam Filtering Using AI 5.1 Introduction 5.1.1 What is SPAM? 5.1.2 Purpose of Spamming 5.1.3 Spam Filters Inputs and Outputs 5.2 Content-Based Spam Filtering Techniques 5.2.1 Previous Likeness–Based Filters 5.2.2 Case-Based Reasoning Filters 5.2.3 Ontology-Based E-Mail Filters 5.2.4 Machine-Learning Models 5.3 Machine Learning–Based Filtering 5.3.1 Linear Classifiers 5.3.2 Naïve Bayes Filtering 5.3.3 Support Vector Machines 5.3.4 Neural Networks and Fuzzy Logics–Based Filtering 5.4 Performance Analysis 5.5 Conclusion References 6 Artificial Intelligence in the Cyber Security Environment 6.1 Introduction 6.2 Digital Protection and Security Correspondences Arrangements 6.2.1 Operation Safety and Event Response 6.2.2 AI2 6.3 Black Tracking 6.3.1 Web Security 6.4 Spark Cognition Deep Military 6.5 The Process of Detecting Threats 6.6 Vectra Cognito Networks 6.7 Conclusion References 7 Privacy in Multi-Tenancy Frameworks Using AI 7.1 Introduction 7.2 Framework of Multi-Tenancy 7.3 Privacy and Security in Multi-Tenant Base System Using AI 7.4 Related Work 7.5 Conclusion References 8 Biometric Facial Detection and Recognition Based on ILPB and SVM 8.1 Introduction 8.1.1 Biometric 8.1.2 Categories of Biometric 8.1.3 Significance and Scope 8.1.4 Biometric Face Recognition 8.1.5 Related Work 8.1.6 Main Contribution 8.1.7 Novelty Discussion 8.2 The Proposed Methodolgy 8.2.1 Face Detection Using Haar Algorithm 8.2.2 Feature Extraction Using ILBP 8.2.3 Dataset 8.2.4 Classification Using SVM 8.3 Experimental Results 8.3.1 Face Detection 8.3.2 Feature Extraction 8.3.3 Recognize Face Image 8.4 Conclusion References 9 Intelligent Robot for Automatic Detection of Defects in Pre-Stressed Multi-Strand Wires and Medical Gas Pipe Line System Using 9.1 Introduction 9.2 Inspection System for Defect Detection 9.3 Defect Recognition Methodology 9.4 Health Care MGPS Inspection 9.5 Conclusion References 10 Fuzzy Approach for Designing Security Framework 10.1 Introduction 10.2 Fuzzy Set 10.3 Planning for a Rule-Based Expert System for Cyber Security 10.3.1 Level 1: Defining Cyber Security Expert System Variables 10.3.2 Level 2: Information Gathering for Cyber Terrorism 10.3.3 Level 3: System Design 10.3.4 Level 4: Rule-Based Model 10.4 Digital Security 10.4.1 Cyber-Threats 10.4.2 Cyber Fault 10.4.3 Different Types of Security Services 10.5 Improvement of Cyber Security System (Advance) 10.5.1 Structure 10.5.2 Cyber Terrorism for Information/Data Collection 10.6 Conclusions References 11 Threat Analysis Using Data Mining Technique 11.1 Introduction 11.2 Related Work 11.3 Data Mining Methods in Favor of Cyber-Attack Detection 11.4 Process of Cyber-Attack Detection Based on Data Mining 11.5 Conclusion References 12 Intrusion Detection Using Data Mining 12.1 Introduction 12.2 Essential Concept 12.2.1 Intrusion Detection System 12.2.2 Categorization of IDS 12.3 Detection Program 12.3.1 Misuse Detection 12.4 Decision Tree 12.4.1 Classification and Regression Tree (CART) 12.4.2 Iterative Dichotomise 3 (ID3) 12.4.3 C 4.5 12.5 Data Mining Model for Detecting the Attacks 12.5.1 Framework of the Technique 12.6 Conclusion References 13 A Maize Crop Yield Optimization and Healthcare Monitoring Framework Using Firefly Algorithm through IoT 13.1 Introduction 13.2 Literature Survey 13.3 Experimental Framework 13.4 Healthcare Monitoring 13.5 Results and Discussion 13.6 Conclusion References 14 Vision-Based Gesture Recognition: A Critical Review 14.1 Introduction 14.2 Issues in Vision-Based Gesture Recognition 14.2.1 Based on Gestures 14.2.2 Based on Performance 14.2.3 Based on Background 14.3 Step-by-Step Process in Vision-Based 14.3.1 Sensing 14.3.2 Preprocessing 14.3.3 Feature Extraction 14.4 Classification 14.5 Literature Review 14.6 Conclusion References 15 SPAM Filtering Using Artificial Intelligence 15.1 Introduction 15.2 Architecture of Email Servers and Email Processing Stages 15.2.1 Architecture Email Spam Filtering 15.2.2 Email Spam Filtering Process 15.2.3 Freely Available Email Spam Collection 15.3 Execution Evaluation Measures 15.4 Classification Machine Learning Technique for Email Spam 15.4.1 Flock Technique Clustering 15.4.2 Naïve Bayes Classifier 15.4.3 Neural Network 15.4.4 Firefly Algorithm 15.4.5 Fuzzy Set Classifiers 15.4.6 Support Vector Machine 15.4.7 Decision Tree 15.4.8 Ensemble Classifiers 15.4.9 Random Forests (RF) 15.5 Conclusion References About the Editors Index EULA