دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Jihad Badra (editor), Pinaki Pal (editor), Yuanjiang Pei (editor), Sibendu Som (editor) سری: ISBN (شابک) : 0323884571, 9780323884570 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 260 [259] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی و بهینه سازی داده محور موتورهای احتراق داخلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بهینه سازی هوش مصنوعی و داده محور موتورهای احتراق داخلی تحولات اخیر در هوش مصنوعی (AI)/یادگیری ماشین (ML) و تکنیک های بهینه سازی و کالیبراسیون مبتنی بر داده برای موتورهای احتراق داخلی را خلاصه می کند. این کتاب AI/ML و روشهای مبتنی بر داده را برای بهینهسازی فرمولهای سوخت و سیستمهای احتراق موتور، پیشبینی تغییرات چرخه به چرخه، و بهینهسازی سیستمهای پس از تصفیه و کالیبراسیون آزمایشی موتور پوشش میدهد. این شامل تمام جزئیات آخرین تکنیکهای بهینهسازی به همراه کاربرد آنها در ICE است، که آن را برای مهندسان خودرو، مهندسان مکانیک، OEM و مراکز تحقیق و توسعه درگیر در طراحی موتور ایدهآل میکند.
Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines summarizes recent developments in Artificial Intelligence (AI)/Machine Learning (ML) and data driven optimization and calibration techniques for internal combustion engines. The book covers AI/ML and data driven methods to optimize fuel formulations and engine combustion systems, predict cycle to cycle variations, and optimize after-treatment systems and experimental engine calibration. It contains all the details of the latest optimization techniques along with their application to ICE, making it ideal for automotive engineers, mechanical engineers, OEMs and R&D centers involved in engine design.
c4e4c6d9_Cover Copyrig_2022_Artificial-Intelligence-and-Data-Driven-Optimization-of-Interna Copyright Contents Contribut_2022_Artificial-Intelligence-and-Data-Driven-Optimization-of-Inter Contributors Forewor_2022_Artificial-Intelligence-and-Data-Driven-Optimization-of-Interna Foreword Prefac_2022_Artificial-Intelligence-and-Data-Driven-Optimization-of-Internal Preface Chapter-1---Intr_2022_Artificial-Intelligence-and-Data-Driven-Optimization-o 1 . Introduction 1. Industrial revolution 2. Artificial intelligence, machine learning, and deep learning 3. Machine learning algorithms 4. Artificial intelligence-based fuel-engine co-optimization 4.1 Optimization of internal combustion engine 4.1.1 Design of experiments 4.1.2 Genetic algorithm 4.1.3 Machine learning-based algorithms 4.2 Optimization of fuel formulation 4.3 Mitigation of rare combustion events 5. Summary References Chapter-2---Optimization-of-fuel-formu_2022_Artificial-Intelligence-and-Data 2 . Optimization of fuel formulation using adaptive learning and artificial intelligence 1. Introduction and motivation 2. Mixed-mode combustion and fuel performance metrics 3. A neural network model to predict fuel research octane numbers 4. Optimization problem formulation and description of solution approaches 4.1 Constrained optimization formulation 4.2 Genetic algorithm 4.3 Gaussian process–based surrogate model optimization algorithm 5. Numerical experiments and results 6. Discussion 7. Summary and concluding remarks Acknowledgments References Chapter-3---Artificial-intel_2022_Artificial-Intelligence-and-Data-Driven-Op 3 . Artificial intelligence–enabled fuel design 1. Transportation fuels 1.1 Fuel representation 1.2 Fuel formulation workflow 1.3 Artificial intelligence modeling approaches 2. Application of artificial intelligence to fuel formulation 2.1 High throughput screening: finding a needle in the haystack 2.2 Fuel property prediction by machine learning models 2.3 Reaction discovery 2.4 Fuel-engine co-optimization 3. Conclusions and perspectives Acknowledgments References Chapter-4---Engine-optimization-using_2022_Artificial-Intelligence-and-Data- 4 . Engine optimization using computational fluid dynamics and genetic algorithms 1. Introduction 2. Modeling framework and acceleration strategies 2.1 Computational fluid dynamics acceleration techniques 2.1.1 Adaptive mesh refinement 2.1.2 Detailed chemistry acceleration strategies 2.2 Engine geometry generation 2.2.1 Method of splines 2.2.2 Method of forces 2.3 Virtual injection model 3. Optimization methods 3.1 Fundamentals of genetic algorithms 3.2 Pioneering investigations 3.3 Multiobjective framework 3.4 Convergence acceleration 4. Summary and concluding remarks References Chapter-5---Computational-fluid-dynamics-g_2022_Artificial-Intelligence-and- 5 . Computational fluid dynamics–guided engine combustion system design optimization using design of experiments 1. Introduction 2. Methodologies 2.1 Design space construction 2.2 Response surface model formulation 2.3 Model-based design optimization and verification 3. A recent application 3.1 Engine and fuel specifications 3.2 Computational fluid dynamic model setup and validation 3.3 Design variables 3.4 Objective variables and evaluation method 3.5 Data fitting and optimization 4. Recommendations for best practice 4.1 Adequate computational fluid dynamic model validation 4.2 Efficient geometry and mesh manipulation 4.3 Sample size 4.4 Optimization across full engine operation range 4.5 Computational efficiency 5. Conclusions and perspectives Acknowledgments References Chapter-6---A-machine-learning-genetic-al_2022_Artificial-Intelligence-and-D 6 . A machine learning-genetic algorithm approach for rapid optimization of internal combustion engines 1. Introduction 2. Engine optimization problem setup 3. Training and data examination 4. Machine learning-genetic algorithm approach 4.1 Optimization methodology 4.2 Repeatability of machine learning-genetic algorithm 4.2.1 Extension of variable domain 4.3 Postprocessing and robustness 5. Automated machine learning-genetic algorithm 5.1 Hyperparameter selection 5.1.1 Manual selection 5.1.2 Automated strategies for selecting hyperparameters 5.2 Problem setup 5.3 Results 6. Summary Acknowledgments References Chapter-7---Machine-learning-driven-seq_2022_Artificial-Intelligence-and-Dat 7 . Machine learning–driven sequential optimization using dynamic exploration and exploitation 1. Introduction 2. Active ML optimization (ActivO) 2.1 Basic algorithm 2.2 Query strategies 2.3 Convergence criteria 2.4 Dynamic exploration and exploitation 3. Case study 1: two-dimensional cosine mixture function 4. Case study 2: computational fluid dynamics (CFD)-based engine optimization 5. Conclusions Acknowledgments References Chapter-8---Artificial-intelligence-based-_2022_Artificial-Intelligence-and- 8 . Artificial-intelligence-based prediction and control of combustion instabilities in spark-ignition engines 1. Introduction 1.1 Artificial intelligence applications to engine controls 1.2 Dilute combustion instability background 2. Case study: artificial-intelligence-enhanced modeling of dilute spark-ignition cycle-to-cycle variability 3. Case study: neural networks for combustion stability control 3.1 Artificial neural networks 3.2 Spiking neural networks 4. Case study: learning reference governor for model-free dilute limit identification and avoidance 4.1 Constrained combustion phasing control problem 4.2 Learning reference governor for avoiding misfire events 5. Summary References Chapter-9---Using-deep-learning-to-di_2022_Artificial-Intelligence-and-Data- 9 . Using deep learning to diagnose preignition in turbocharged spark-ignited engines 1. Introduction 1.1 Fault detection 1.2 Optimization and control 1.3 Predicting combustion parameters (phasing and cycle-to-cycle variation) and emissions 2. Preignition detection using machine learning algorithm 2.1 Feed forward multilayer neural networks 2.2 Convolutional neural networks 2.3 Recurrent neural networks 3. Activation functions 4. Experiments and data extraction 5. Machine learning methodology 6. Model 1: Input from principal component analysis 7. Model 2: Time series input 8. Model metrics 9. Results and discussion 9.1 Training and validation losses 10. Conclusions References Further reading Inde_2022_Artificial-Intelligence-and-Data-Driven-Optimization-of-Internal-C Index A B C D E F G H I K L M N O P Q R S T U V Z